Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Importance of predation and viral lysis for bacterial mortality in a tropical western Indian coral-reef ecosystem (Toliara, Madagascar)

M. Bouvy A E , P. Got A , Y. Bettarel A , T. Bouvier A , C. Carré A , C. Roques A , M. Rodier B , J. C. Lope C and R. Arfi D
+ Author Affiliations
- Author Affiliations

A UMR 5119, ECOSYM, IRD, Université Montpellier 2, CNRS, Université Montpellier 1; Place Eugène Bataillon, Case 093, F-34095 Montpellier Cedex 5, France.

B IRD, UMR MIO, Centre IRD de Nouméa, BPA5, 98848 Nouméa, Nouvelle-Calédonie.

C IHSM, Route du Port, BP 141, 601, Toliara, Madagascar.

D IRD, Le Sextant, 44 Boulevard de Dunkerque, F-13572 Marseille Cedex 2, France.

E Corresponding author. Email: marc.bouvy@ird.fr

Marine and Freshwater Research 66(11) 1009-1017 https://doi.org/10.1071/MF14253
Submitted: 26 August 2014  Accepted: 10 December 2014   Published: 7 April 2015

Abstract

Size fractionation was performed using water from the Great Reef of Toliara (Madagascar) taken from two different habitats (ocean and lagoon) during the dry and wet seasons, to study the growth and mortality rates of bacterioplankton. Experiments were conducted with 1 and 100% of heterotrophic nanoflagellate (HNF) concentrations and virus-free water was obtained by tangential filtration (10 kDa). During the dry season, in both environments, bacterial abundance and production were significantly lower than values recorded during the wet season. Bacterial growth rates without grazers were 0.88 day–1 in the lagoon and 0.58 day–1 in the ocean. However, growth rates were statistically higher without grazers and viruses (1.58 day–1 and 1.27 day–1). An estimate of virus-induced bacterial mortality revealed the important role played by viruses in the lagoon (0.70 day–1) and the ocean (0.69 day–1). During the wet season, bacterial growth rates without grazers were significantly higher in both environments than were values obtained in the dry season. However, the bacterial growth rates were paradoxally lower in the absence of viruses than with viruses in both environments. Our results suggest that changes in nutrient concentrations can play an important role in the balance between viral lysis and HNF grazing in the bacterial mortality. However, virus-mediated bacterial mortality is likely to act simultaneously with nanoflagellates pressure in their effects on bacterial communities.

Additional keywords: factor control, grazing experiment, HNF grazing, lagoon and ocean environment.


References

Battistini, R., Jouannic, C., Maugé, L.A., Casellato, G., and Vernier, E. (1975). Morphologie et sédimentologie du canyon sous marin de l’Onilahy (sud-ouest de Madagascar). Cahier de l’ORSTOM, Série Géologie 7, 95–110.

Berdjeb, L., Pollet, T., Domaizon, I., and Jacquet, S. (2011). Effect of grazers and viruses on bacterial community structure and production rates in two contrasting trophic lakes. BMC Microbiology 11, 88–98.
Effect of grazers and viruses on bacterial community structure and production rates in two contrasting trophic lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsl2ns7o%3D&md5=d011d7a4a73450e5de1636181ae0d3d8CAS | 21527043PubMed |

Bergh, O., Borsheim, K. Y., Bratbak, G., and Heldal, M. (1989). High abundance of viruses found in aquatic environments. Nature 340, 467–468.
High abundance of viruses found in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzjtVGqsw%3D%3D&md5=ef5d8c47057d08d9b41658e714f87b22CAS | 2755508PubMed |

Bettarel, Y., Sime-Ngando, T., Bouvy, M., Arfi, R., and Amblard, C. (2005). Low consumption of virus-sized particles by hetero- trophic nanoflagellates in two lakes of French Massif Central. Aquatic Microbial Ecology 39, 205–209.
Low consumption of virus-sized particles by hetero- trophic nanoflagellates in two lakes of French Massif Central.Crossref | GoogleScholarGoogle Scholar |

Bettarel, Y., Bouvy, M., Dumont, C., and Sime-Ngando, T. (2006). Virus–bacterium interactions in water and sediment of West African inland aquatic systems. Applied and Environmental Microbiology 72, 5274–5282.
Virus–bacterium interactions in water and sediment of West African inland aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKlsrc%3D&md5=e8e9abf941c0c68d5fd3128cd155d07cCAS | 16885276PubMed |

Binder, B. J., Chisholm, S. W., Olson, R. J., Frankel, S. L., and Worden, A. Z. (1996). Dynamics of pico-phytoplankton and ultra-phytoplankton, and bacteria in the central equatorial Pacific. Deep-sea Research. Part I, Oceanographic Research Papers 43, 907–931.

Bonilla-Findji, O., Herndl, G. J., Gatusso, J. P., and Weinbauer, M. G. (2009). Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters. Applied and Environmental Microbiology 75, 4801–4812.
Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2gsL0%3D&md5=94b337fc16c6f85e2478f9782aa90400CAS | 19465525PubMed |

Boras, J. A., Montserrat Sala, M., Vasquez-Dominguez, E., Weinbauer, M. G., and Vaqué, D. (2009). Annual changes of bacterial mortality due to viruses and protist in an oligotrophic coastal environment (NW Mediterranean). Environmental Microbiology 11, 1181–1193.
Annual changes of bacterial mortality due to viruses and protist in an oligotrophic coastal environment (NW Mediterranean).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVeqtLk%3D&md5=60f0d8a412d3112163d639b69175d51fCAS | 19207563PubMed |

Bouvy, M., Bettarel, Y., Bouvier, C., Domaizon, I., Jacquet, S., Le Floc’h, E., Montanié, H., Mostajir, B., Sime-Ngando, T., Torréton, J. P., Vidussi, F., and Bouvier, T. (2011). Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change. Environmental Microbiology 13, 1842–1857.
Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVajurrO&md5=f07a4754d63b9d0651f2554a21b0aa2fCAS | 21605305PubMed |

Bouvy, M., Combe, M., Bettarel, Y., Dupuy, C., Rochelle-Newall, E., and Charpy, L. (2012). Uncoupled viral and bacterial distributions in coral reef waters of Tuamotu Archipelago (French Polynesia). Marine Pollution Bulletin 65, 506–515.
Uncoupled viral and bacterial distributions in coral reef waters of Tuamotu Archipelago (French Polynesia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OmsrzE&md5=c66be80fc7902194fa05d97d053dfad8CAS | 22284701PubMed |

Boyle, E. A., Bergquist, B. A., Kayser, R. A., and Mahowald, N. (2005). Iron, manganese, and lead at Hawaii Ocean Tune series station ALOHA. Temporal variability and an intermediate water hydrothermal plume. Geochimica et Cosmochimica Acta 69, 933–952.
Iron, manganese, and lead at Hawaii Ocean Tune series station ALOHA. Temporal variability and an intermediate water hydrothermal plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVGht78%3D&md5=ba4b67a8d4c0663ff8c623e716750626CAS |

Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography 22, 361–369.
A trophic state index for lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktFWhtbs%3D&md5=a182a0ae9db3d688492c39481cff5fcaCAS |

Charpy, L. (1996). Phytoplankton biomass and production in two Tuamotu atoll lagoons (French Polynesia). Marine Ecology Progress Series 145, 133–142.
Phytoplankton biomass and production in two Tuamotu atoll lagoons (French Polynesia).Crossref | GoogleScholarGoogle Scholar |

Chen, F., Lu, J., Binder, B., Liu, Y., and Hodson, R. (2001). Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Applied and Environmental Microbiology 67, 539–545.
Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFSmtLw%3D&md5=8d1b6643b4999c1127426d8f014793e4CAS | 11157214PubMed |

Choi, J. W. (1994). The dynamic nature of protistan ingestion response to prey abundance. The Journal of Eukaryotic Microbiology 41, 137–146.
The dynamic nature of protistan ingestion response to prey abundance.Crossref | GoogleScholarGoogle Scholar |

Colombet, J., Sime-Ngando, T., Cauchie, H. M., Fonty, G., Hoffmann, L., and Demeure, G. (2006). Depth-related gradients of viral activity in Lake Pavin. Applied and Environmental Microbiology 72, 4440–4445.
Depth-related gradients of viral activity in Lake Pavin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2ns7s%3D&md5=3989769e743b683a9d24bcf9cdbc2954CAS | 16751565PubMed |

Danovaro, R., Dell’Anno, A., Corinaldesi, C., Magagnini, M., Noble, R., Tamburini, C., and Weinbauer, M. (2008). Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1088.
Major viral impact on the functioning of benthic deep-sea ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGgsbfF&md5=279c44b5171da6d4567a78cd10d0b457CAS | 18756250PubMed |

Davis, P. G., and Sieburth, J. M. (1984). Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing divided bacteria. Marine Ecology Progress Series 19, 237–246.
Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing divided bacteria.Crossref | GoogleScholarGoogle Scholar |

Dinsdale, E. A., Pantos, O., Smrigs, S., Edwards, R. A., Angly, F., Wegley, L., Hatay, M., Hall, D., Brown, E., Haynes, M., Krause, L., Sala, E., Sandin, S. A., Thurber, R. V., Willis, B. L., Azam, F., Knowlton, N., and Rohwer, F. (2008). Microbial ecology of four coral atolls in the northern line islands. PLoS ONE 3, e1584.
Microbial ecology of four coral atolls in the northern line islands.Crossref | GoogleScholarGoogle Scholar | 18301735PubMed |

Filippini, M., and Middelboe, M. (2007). Viral abundance and genome size distribution in the sediment and water column of marine and freshwater ecosystems. Microbial Ecology 60, 397–410.
Viral abundance and genome size distribution in the sediment and water column of marine and freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFemur4%3D&md5=e0c26d2072004417d4dafca9e79831f2CAS |

Fuhrman, J. A. (1999). Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548.
Marine viruses and their biogeochemical and ecological effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFeiurk%3D&md5=6dd17c53c46abe9bdfcfd5ed60b72fa6CAS | 10376593PubMed |

Fuhrman, J. A., and Noble, R. T. (1995). Viruses and protists cause similar bacterial mortality in coastal seawater. Limnology and Oceanography 40, 1236–1242.
Viruses and protists cause similar bacterial mortality in coastal seawater.Crossref | GoogleScholarGoogle Scholar |

Guixa-Boixereu, N., Lysnes, K., and Pedros-Alio, C. (1999). Viral lysis and bacterivory during a phytoplankton bloom in a coastal water microcosm. Applied and Environmental Microbiology 65, 1949–1958.
| 1:CAS:528:DyaK1MXjtVams74%3D&md5=0b76dafde78c08fe77235a674fe1f354CAS | 10223985PubMed |

Hahn, M. W., and Höfle, M. G. (2001). Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiology Ecology 35, 113–121.
Grazing of protozoa and its effect on populations of aquatic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisF2rsLk%3D&md5=301d91eb74cab42f53489120dcc37ad9CAS | 11295449PubMed |

Houlbrèque, F., Delesalle, B., Blanchot, J., Montel, Y., and Ferrier-Pagès, C. (2006). Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island. Aquatic Microbial Ecology 44, 59–70.
Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island.Crossref | GoogleScholarGoogle Scholar |

Jacquet, S., Domaizon, I., Personnic, S., Duhamel, S., Heldal, M., Pradeep Ram, A. S., and Sime Ngando, T. (2005). Estimates of protozoan and virus-mediated mortality of bacterioplankton in Lake Bourget (France). Freshwater Biology 50, 627–645.
Estimates of protozoan and virus-mediated mortality of bacterioplankton in Lake Bourget (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsV2rsLY%3D&md5=5358a3e64e1ab1ad7120d801bcfcaf36CAS |

Jacquet, S., Miki, T., Noble, R., Peduzzi, P., and Wilhelm, S. (2010). Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Advances in Oceanography Limnology 1, 97–141.
Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKgt7bF&md5=8a8673f32dba39b389c6b4bc4443e50aCAS |

Joint, A., Henriksen, P., Fonnes, G. A., Bourne, D., Thingstad, T. F., and Riemann, B. (2002). Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquatic Microbial Ecology 29, 145–159.
Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms.Crossref | GoogleScholarGoogle Scholar |

Jürgens, K., and Simek, K. (2000). Functional response and particle size selection of Halteria cf. grandinella, a common freshwater oligotrichous ciliate. Aquatic Microbial Ecology 22, 57–68.
Functional response and particle size selection of Halteria cf. grandinella, a common freshwater oligotrichous ciliate.Crossref | GoogleScholarGoogle Scholar |

Kaise, E., and Herndl, G. J. (1997). Rapid recovery of marine bacterioplankton after inhibition by UV radiation in coastal waters. Applied and Environmental Microbiology 63, 4026–4031.

Karayanni, H., Christaki, U., Van Wambeke, F., Thyssen, M., and Denis, M. (2008). Heterotrophic nanoflagellate and ciliate bacterivorous activity and growth in the northeast Atlantic Ocean: a seasonal mesoscale study. Aquatic Microbial Ecology 51, 169–181.
Heterotrophic nanoflagellate and ciliate bacterivorous activity and growth in the northeast Atlantic Ocean: a seasonal mesoscale study.Crossref | GoogleScholarGoogle Scholar |

Li, W. K. W., Head, E. J. H., and Harrison, W. G. (2004). Macroecological limits of heterotrophic bacterial abundance in the sea. Deep-sea Research. Part I. Oceanographic Research Papers 51, 1529–1540.
Macroecological limits of heterotrophic bacterial abundance in the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos12isrg%3D&md5=aab55a3489470cd3f3687db8c9d0dc19CAS |

Madin, J. S., and Connolly, S. R. (2006). Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444, 477–480.
Ecological consequences of major hydrodynamic disturbances on coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1aku7zP&md5=e99e8539527a25a4f25be975b4da1555CAS | 17122855PubMed |

Maestrini, S., and Pizarro, M. J. (1966). Contribution à l’étude de l’hydrologie et de la productivité primaire des eaux côtières de la région de Tuléar. Annales University Madagascar Série Sciences Naturelles Mathématiques 4, 17–34.

Marie, D., Brussaard, C. P. D., Partensky, F., and Vaulot, D. (1999). Enumeration of phytoplankton, bacteria and viruses in marine samples. In ‘Current Protocols in Cytometry’ (Eds J. P. Robinson, Z. Darzynkiewicz, P. N. Dean, A. Orfao, P. S. Rabinovitch, C. C. Stewart, H. J. Tanke, and L. L. Wheeless.) pp. 11.11.1–11.11.15. (Wiley: Chichester, UK.)

Middelboe, M., Jorgensen, N. O. G., and Kroer, N. (1996). Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Applied and Environmental Microbiology 62, 1991–1997.
| 1:STN:280:DC%2BC3crotlyhtA%3D%3D&md5=18660585ef56dba19d6f51d5d99693c9CAS | 16535334PubMed |

Middelboe, M., Riemann, L., Steward, G. F., Hansen, V., and Nybroe, O. (2003). Virus-induced transfer of organic carbon between marine bacteria in a model community. Aquatic Microbial Ecology 33, 1–10.
Virus-induced transfer of organic carbon between marine bacteria in a model community.Crossref | GoogleScholarGoogle Scholar |

Miki, T., and Jacquet, S. (2008). Complex interactions in the microbial world: underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquatic Microbial Ecology 51, 195–208.
Complex interactions in the microbial world: underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments.Crossref | GoogleScholarGoogle Scholar |

Noble, R. T., and Fuhrman, J. (1997). Viral decay and its causes in coastal waters. Applied and Environmental Microbiology 8, 956–970.

Ory, P., Hartmann, H. J., Jude, F., Dupuy, C., Del Amo, Y., Catala, P., Mornet, F., Huet, V., Jan, B., Vincent, D., Sautour, B., and Montanie, H. (2010). Pelagic food web patterns: do they modulate virus and nanoflagellate effects on picoplankton during the phytoplankton spring bloom? Environmental Microbiology 12, 2755–2772.
| 20482742PubMed |

Patel, A., Noble, R. T., Steele, J. A., Schwalbach, M. S., Hewson, I., and Fuhrman, J. A. (2007). Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nature Protocols 2, 269–276.
Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGntbrL&md5=50d7dec522c6b201aa4777f1865d015eCAS | 17406585PubMed |

Pomeroy, L. R., and Wiebe, W. J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology 23, 187–204.
Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria.Crossref | GoogleScholarGoogle Scholar |

Pradeep Ram, R., Palesse, S., Colombet, J., Thouvenot, A., and Sime-Ngando, T. (2014). The relative importance of viral lysis and nanoflagellate grazing for prokaryote mortality in temperate lakes. Freshwater Biology 59, 300–311.
The relative importance of viral lysis and nanoflagellate grazing for prokaryote mortality in temperate lakes.Crossref | GoogleScholarGoogle Scholar |

Sakka, A., Legendre, L., Gosselin, M., and Delesalle, B. (2000). Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French Polynesia. Marine Ecology Progress Series 197, 1–17.
Structure of the oligotrophic planktonic food web under low grazing of heterotrophic bacteria: Takapoto Atoll, French Polynesia.Crossref | GoogleScholarGoogle Scholar |

Salomon, J. N. (1987). Le sud-ouest de Madagascar, étude de géographie physique. Ph.D. Thesis, University Aix Marseille, France.

Sanders, R. W., Caron, D. A., and Berninger, U. G. (1992). Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Marine Ecology Progress Series 86, 1–14.
Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison.Crossref | GoogleScholarGoogle Scholar |

Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H., and Kang, J. H. (2006). Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Marine Ecology Progress Series 322, 85–97.
Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates.Crossref | GoogleScholarGoogle Scholar |

Seymour, J. R., Pattern, N., Bourne, D. G., and Mitchell, J. G. (2005). Spatial dynamics of virus like particles and heterotrophic bacteria within a shallow coral reef system. Marine Ecology Progress Series 288, 1–8.
Spatial dynamics of virus like particles and heterotrophic bacteria within a shallow coral reef system.Crossref | GoogleScholarGoogle Scholar |

Simek, K., Bokkova, J., Macek, M., Nedoma, J., and Psenner, R. (1995). Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species community level. Limnology and Oceanography 40, 1077–1090.
Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species community level.Crossref | GoogleScholarGoogle Scholar |

Smith, D. C., and Azam, F. (1992). A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6, 107–114.

Strickland, J. D. H., and Parsons, T. R. (1968). ‘A Practical Handbook of Seawater Analysis.’ (Bulletin of Fishery Research: Bedford, NS, Canada.)

Thingstad, T. F., Zweifel, U. L., and Rassoulzadegan, F. (1998). P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnology and Oceanography 43, 88–94.
P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslSnt70%3D&md5=159f61b735d773f5e5dca3b9a33ba960CAS |

Torréton, J. P., Talbot, V., and Garcia, N. (2000). Nutrient stimulation of bacterioplankton growth in Tuamotu atoll lagoons. Aquatic Microbial Ecology 21, 125–137.
Nutrient stimulation of bacterioplankton growth in Tuamotu atoll lagoons.Crossref | GoogleScholarGoogle Scholar |

Troussellier, M., Got, P., Bouvy, M., M’boup, M., Arfi, R., Lebihan, F., Monfort, P., Corbin, D., and Bernard, C. (2004). Water quality and health status of the Senegal River estuary. Marine Pollution Bulletin 48, 852–862.
Water quality and health status of the Senegal River estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVaqs7g%3D&md5=8c90695449d64199bef769bbe2a6f34eCAS | 15111032PubMed |

Tsai, A.-Y., Gong, G.-C., Sanders, R. W., Chen, W.-H., Chao, C.-F., and Chiang, K.-P. (2011). Importance of bacterivory by pigmented and hetrotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem. Aquatic Microbial Ecology 63, 9–18.
Importance of bacterivory by pigmented and hetrotrophic nanoflagellates during the warm season in a subtropical western Pacific coastal ecosystem.Crossref | GoogleScholarGoogle Scholar |

Unrein, F. R., Massana, I., Alonso-Saez, L., and Gasol, J. M. (2007). Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnology and Oceanography 52, 456–469.
Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system.Crossref | GoogleScholarGoogle Scholar |

Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung für Limnologie 9, 1–39.

Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews 28, 127–181.
Ecology of prokaryotic viruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVentLw%3D&md5=c727c55450c792191e540c2bc7c3cd98CAS | 15109783PubMed |

Weinbauer, M. G., and Rassoulzadegan, F. (2004). Are viruses driving prokaryotic diversification and diversity. Environmental Microbiology 6, 1–11.
Are viruses driving prokaryotic diversification and diversity.Crossref | GoogleScholarGoogle Scholar | 14686936PubMed |

Weinbauer, M. G., Winter, C., and Hofle, M. (2002). Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities. Aquatic Microbial Ecology 27, 103–110.
Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities.Crossref | GoogleScholarGoogle Scholar |

Weinbauer, M. G., Nedoma, J., Christaki, U., and Simek, K. (2003). Comparing the effects of resource enrichment and grazing on viral production in a meso-eutrophic reservoir. Aquatic Microbial Ecology 31, 137–144.
Comparing the effects of resource enrichment and grazing on viral production in a meso-eutrophic reservoir.Crossref | GoogleScholarGoogle Scholar |

Weinbauer, M. G., Hornak, K., Jezbera, J., Nedoma, J., Dolan, J. R., and Simek, K. (2007). Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environmental Microbiology 9, 777–788.
Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1GmsLY%3D&md5=0db57752a24847e3d4bb4d1c338892f4CAS | 17298376PubMed |

Weinbauer, M. G., Kerros, M.-E., Motegi, C., Wilhartiz, I. C., Rassoulzadegan, F., Torréton, J. P., and Mari, X. (2010). Bacterial community composition and potential controlling mechanisms along a trophic gradient in a barrier reef system. Aquatic Microbial Ecology 60, 15–28.
Bacterial community composition and potential controlling mechanisms along a trophic gradient in a barrier reef system.Crossref | GoogleScholarGoogle Scholar |

Wells, L. E., and Deming, J. W. (2006). Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquatic Microbial Ecology 43, 209–221.
Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter.Crossref | GoogleScholarGoogle Scholar |

Wilhelm, S. W., and Suttle, C. A. (1999). Viruses and nutrient cycles in the sea. Bioscience 49, 781–788.
Viruses and nutrient cycles in the sea.Crossref | GoogleScholarGoogle Scholar |

Winter, C., Smit, A., Herndl, G., and Weinbauer, M. (2004). Impact of virioplankton on archaeal and bacterial community richness in seawater batch cultures. Applied and Environmental Microbiology 70, 804–813.
Impact of virioplankton on archaeal and bacterial community richness in seawater batch cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Churo%3D&md5=a25f7e71375cc25420be057c2fc6e10bCAS | 14766558PubMed |

Wommack, K. E., and Colwell, R. A. (2000). Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews 64, 69–114.
Virioplankton: viruses in aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ntF2jsw%3D%3D&md5=f618f9d2e93cd68d33380e46b970ad87CAS | 10704475PubMed |

Yentsch, C. S., and Menzel, D. W. (1963). A method for the determination of phytoplankton, chlorophyll and phaeophytin by fluorescence. Deep-Sea Research 10, 221–231.
| 1:CAS:528:DyaF3sXkvVelu78%3D&md5=e7a0d1c032c87df0d2ef6b2d2030b242CAS |

Zhang, R., Weinbauer, M. G., and Qian, P. Y. (2007). Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters. Environmental Microbiology 9, 3008–3018.
Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslOkug%3D%3D&md5=1fdb3c484e99133756ad612b10b35ea0CAS | 17991029PubMed |

Zohary, T., and Robarts, R. D. (1998). Experimental study of microbial P limitation in the eastern Mediterranean. Limnology and Oceanography 43, 387–395.
Experimental study of microbial P limitation in the eastern Mediterranean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFOqs7w%3D&md5=a08378158ef03638b422dbc1cc541b39CAS |