Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Refined bomb radiocarbon dating of two iconic fishes of the Great Barrier Reef

Allen H. Andrews A D , John H. Choat B , Richard J. Hamilton C and Edward E. DeMartini A
+ Author Affiliations
- Author Affiliations

A NOAA Fisheries – Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Honolulu, HI 96818, USA.

B School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

C The Nature Conservancy – Asia-Pacific Division, 245 Riverside Drive, West End, Qld 4101, Australia.

D Corresponding author. Email: allen.andrews@noaa.gov

Marine and Freshwater Research 66(4) 305-316 https://doi.org/10.1071/MF14086
Submitted: 29 March 2014  Accepted: 23 July 2014   Published: 19 November 2014

Abstract

Refinements to the methodology of bomb radiocarbon dating made it possible to validate age estimates of the humphead wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum). Age for these species has been estimated from presumed annual growth zones in otoliths at ~30 and ~40 years respectively. The validity of these estimates was tested using bomb radiocarbon dating on the small and fragile otoliths of these species, and provided an opportunity to refine the method using advanced technologies. A regional Δ14C reference record from hermatypic coral cores from the Great Barrier Reef was assembled and Δ14C measurements from extracted otolith cores of adult otoliths were successful. Validated ages supported the accuracy of growth zone derived ages using sectioned sagittal otoliths.

Additional keywords: Australia, Bolbometopon muricatum, bumphead parrotfish, carbon-14, Cheilinus undulatus, humphead wrasse, Labridae, micromilling, otolith.


References

Andrews, A. H., Tracey, D. M., and Dunn, M. R. (2009). Lead–radium dating of orange roughy (Hoplostethus altanticus): validation of a centenarian life span. Canadian Journal of Fisheries and Aquatic Sciences 66, 1130–1140.
Lead–radium dating of orange roughy (Hoplostethus altanticus): validation of a centenarian life span.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlegtr8%3D&md5=4db3983c8e5c3472bb5c03b3e21075c5CAS |

Andrews, A. H., Kalish, J. M., Newman, S. J., and Johnston, J. M. (2011). Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies. Marine and Freshwater Research 62, 1259–1269.
Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqu77M&md5=bf2c8210c09396b780c7caaa8ce78cfeCAS |

Andrews, A. H., DeMartini, E. E., Brodziak, J., Nichols, R. S., and Humphreys, R. L. (2012). A long-lived life history for a tropical, deep-water snapper (Pristipomoides filamentosus): bomb radiocarbon and lead–radium dating as extensions of daily increment analyses in otoliths. Canadian Journal of Fisheries and Aquatic Sciences 69, 1850–1869.
A long-lived life history for a tropical, deep-water snapper (Pristipomoides filamentosus): bomb radiocarbon and lead–radium dating as extensions of daily increment analyses in otoliths.Crossref | GoogleScholarGoogle Scholar |

Andrews, A. H., Barnett, B. K., Allman, R. J., Moyer, R. P., and Trowbridge, H. D. (2013a). Great longevity of speckled hind (Epinephelus drummondhayi), a deep-water grouper, with novel use of post-bomb radiocarbon dating in the Gulf of Mexico. Canadian Journal of Fisheries and Aquatic Sciences 70, 1131–1140.
Great longevity of speckled hind (Epinephelus drummondhayi), a deep-water grouper, with novel use of post-bomb radiocarbon dating in the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVehsbvO&md5=c771208825ed2edacc913e35f2e6225eCAS |

Andrews, A. H., Leaf, R. T., Rogers-Bennett, L., Newman, M., Hawk, H., and Cailliet, G. M. (2013b). Bomb radiocarbon dating of the endangered white abalone (Haliotis sorenseni): investigations of age, growth and lifespan. Marine and Freshwater Research 64, 1029–1039.
Bomb radiocarbon dating of the endangered white abalone (Haliotis sorenseni): investigations of age, growth and lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygsLfF&md5=2d63e80f97766a34470367cda7fa9270CAS |

Baker, M. S., and Wilson, C. A. (2001). Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico. Limnology and Oceanography 46, 1819–1824.
Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Beamish, R. J., McFarlane, G. A., and Benson, A. (2006). Longevity overfishing. Progress in Oceanography 68, 289–302.
Longevity overfishing.Crossref | GoogleScholarGoogle Scholar |

Bellwood, D. R., and Choat, J. H. (1990). A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environmental Biology of Fishes 28, 189–214.
A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications.Crossref | GoogleScholarGoogle Scholar |

Bellwood, D. R., and Choat, J. H. (2011). Dangerous demographics: the lack of juvenile humphead parrotfish Bolbometopon muricatum on the Great Barrier Reef. Coral Reefs 30, 549–554.
Dangerous demographics: the lack of juvenile humphead parrotfish Bolbometopon muricatum on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Bellwood, D. R., Hoey, A., and Choat, J. H. (2003). Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters 6, 281–285.
Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Bonaldo, R. M., and Bellwood, D. R. (2011). Parrotfish predation on massive Porites on the Great Barrier Reef. Coral Reefs 30, 259–269.
Parrotfish predation on massive Porites on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Broecker, W. S., and Peng, T.-H. (1982). ‘Tracers in the Sea.’ (Lamont-Doherty Geological Observatory, Columbia University: Palisades, NY.)

Cailliet, G. M., and Andrews, A. H. (2008). Age-validated longevity of fishes: its importance for sustainable fisheries. In ‘Fisheries for Global Welfare and Environment’. (Eds K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard Jr, and M. J. Kaiser.) pp. 103–120. (5th World Fisheries Congress, TERRAPUB: Japan)

Campana, S. E., and Jones, C. M. (1998). Radiocarbon from nuclear testing applied to age validation of black drum, Pogonias cromis. Fishery Bulletin 96, 185–192.

Campana, S. E., Natanson, L. J., and Myklevoll, S. (2002). Bomb dating and age determination of large pelagic sharks. Canadian Journal of Fisheries and Aquatic Sciences 59, 450–455.
Bomb dating and age determination of large pelagic sharks.Crossref | GoogleScholarGoogle Scholar |

Chan, T., Sadovy, Y., and Donaldson, T. J. (2012). Bolbometopon muricatum. In ‘IUCN 2012. IUCN Red List of Threatened Species. Version 2013.2’. Available at http://www.iucnredlist.org/details/63571/0 [Verified 9 October 2014].

Choat, J. H., and Robertson, D. R. (2002). Age-based studies on coral reef fishes. In ‘Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem’. (Ed. P.F. Sale.) pp. 57–80. (Elsevier: New York.)

Choat, J. H., Axe, L. M., and Lou, D. C. (1996). Growth and longevity in fishes of the family Scaridae. Marine Ecology Progress Series 145, 33–41.
Growth and longevity in fishes of the family Scaridae.Crossref | GoogleScholarGoogle Scholar |

Choat, J. H., Davies, C. R., Ackerman, J. L., and Mapstone, B. D. (2006). Age structure and growth in a large teleost, Cheilinus undulatus, with a review of size distribution in labrid fishes. Marine Ecology Progress Series 318, 237–246.
Age structure and growth in a large teleost, Cheilinus undulatus, with a review of size distribution in labrid fishes.Crossref | GoogleScholarGoogle Scholar |

Choat, J. H., Kritzer, J. P., and Ackerman, J. L. (2009). Ageing in coral reef fishes: do we need to validate the periodicity of increment formation for every species of fish for which we collect age-based demographic data? In ‘Tropical Fish Otoliths: Information for Assessment, Management and Ecology’. (Eds B. S. Green, B. D. Mapstone, G. Carlos, and G. A. Begg.) pp. 23–54. (Springer: New York.)

Cook, M., Fitzhugh, G. R., and Franks, J. S. (2009). Validation of yellowedge grouper, Epinephelus flavolimbatus, age using nuclear bomb-produced radiocarbon. Environmental Biology of Fishes 86, 461–472.
Validation of yellowedge grouper, Epinephelus flavolimbatus, age using nuclear bomb-produced radiocarbon.Crossref | GoogleScholarGoogle Scholar |

Coplen, T. B. (1996). New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta 60, 3359–3360.
New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFKnu74%3D&md5=d6ebf266d9b8cfbba07c1587566be481CAS |

Darrenougue, N., De Deckker, P., Payri, C., Eggins, S., and Fallon, S. (2013). Growth and chronology of the rhodolith-forming, coralline red alga Sporolithon durum. Marine Ecology Progress Series 474, 105–119.
Growth and chronology of the rhodolith-forming, coralline red alga Sporolithon durum.Crossref | GoogleScholarGoogle Scholar |

DeMartini, E. E., and Smith, J. E. (2014). Effects of fishing on the fishes and habitat of coral reefs. In ‘Ecology of Fishes on Coral Reefs: the Functioning of an Ecosystem in a Changing World’. (Ed. C. Mora) Chapter 14, pp. 321–342. (Cambridge University Press: Cambridge, MA, USA.)

Druffel, E. R. M., and Griffin, S. (1995). Regional variability of surface ocean radiocarbon from southern Great Barrier Reef corals. Radiocarbon 37, 517–524.
| 1:CAS:528:DyaK28XislOlsL8%3D&md5=d10cf0442bfe4e31a0a08fd88313ed09CAS |

Druffel, E. R. M., and Linick, T. W. (1978). Radiocarbon in annual coral rings of Florida. Geophysical Research Letters 5, 913–916.
Radiocarbon in annual coral rings of Florida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktFKgug%3D%3D&md5=f474598ab12c33952dff91b9f5e4591cCAS |

Druffel, E. M., and Suess, H. E. (1983). On the radiocarbon in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88, 1271–1280.
On the radiocarbon in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsVOjsLw%3D&md5=2f13d71ddfb51bf2fcfbfe45305862c7CAS |

Filer, K. R., and Sedberry, G. R. (2008). Age, growth and reproduction of the barrelfish Hyperglyphe perciformis (Mitchill) in the western North Atlantic. Journal of Fish Biology 72, 861–882.
Age, growth and reproduction of the barrelfish Hyperglyphe perciformis (Mitchill) in the western North Atlantic.Crossref | GoogleScholarGoogle Scholar |

Frantz, B. R., Foster, M. S., and Riosmensa-Rodriguez, R. (2005). Clathromorphum nereostratum (Corralinales, Rhodophyta): the oldest alga? Journal of Phycology 41, 770–773.
Clathromorphum nereostratum (Corralinales, Rhodophyta): the oldest alga?Crossref | GoogleScholarGoogle Scholar |

Fry, B. (1988). Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography 33, 1182–1190.
Food web structure on Georges Bank from stable C, N, and S isotopic compositions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVCktg%3D%3D&md5=7a192e395420cfd1bc703c460dc748efCAS |

Ganachaud, A., Kessler, F. W., Wijffels, F. S., Ridgway, F. K., Cai, F. W., Holbrook, N., Bowen, F. M., Sutton, F. P., Qiu, F. B., Timmermann, F. A., Roemmich, D., Sprintall, F. J., Cravatte, F. S., Gourdeau, F. L., and Aung, F. T. (2007). Southwest Pacific Ocean Circulation and Climate Experiment (SPICE). Part I. Scientific Background. International CLIVAR Project Office, CLIVAR Publication Series number 111. NOAA OAR Special Report, NOAA/OAR/PMEL, Seattle, WA.

Gillespie, R., and Polach, H. A. (1979). The suitability of marine shells for radiocarbon dating of Australian prehistory. In ‘Radiocarbon Dating: Proceedings of the Ninth International Conference’. (Eds R. Berger and H. E. Suess.) pp. 404–421. (University of California Press: Berkeley, CA.)

Glynn, D., Druffel, E., Griffin, S., Dunbar, R., Osborne, M., and Sanchez-Cabeza, J. A. (2013). Early bomb radiocarbon detected in Palau Archipelago corals. Radiocarbon 55, 1659–1664.
Early bomb radiocarbon detected in Palau Archipelago corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKnsrvK&md5=355c27b3ea37404c915539678fd28a0cCAS |

Grottoli, G. G., and Eakin, C. M. (2007). A review of modern coral δ18O and Δ14C proxy records. Earth-Science Reviews 81, 67–91.
A review of modern coral δ18O and Δ14C proxy records.Crossref | GoogleScholarGoogle Scholar |

Guilderson, T. P., Schrag, D. P., Goddard, E., Kashgarian, M., Wellington, G. M., and Linsley, B. K. (2000). Southwest subtropical Pacific surface water radiocarbon high-resolution coral record. Radiocarbon 42, 249–256.
| 1:CAS:528:DC%2BD3cXotFSmsLg%3D&md5=d34a2eadd27338518ba0caae221e1a18CAS |

Guilderson, T. P., Schrag, D. P., and Cane, M. A. (2004). Surface water mixing in the Solomon Sea as documented by high-resolution coral 14C record. Journal of Climate 17, 1147–1156.
Surface water mixing in the Solomon Sea as documented by high-resolution coral 14C record.Crossref | GoogleScholarGoogle Scholar |

Hamilton, R. J. (2004). The demographics of bumphead parrotfish (Bolbometopon muricatum) in lightly and heavily fished regions of the Western Solomon Islands. Ph.D. Thesis, University of Otago, Dunedin, New Zealand.

Hamilton, R. J., and Choat, J. H. (2012). Bumphead parrotfish – Bolbometopon muricatum. In ‘Reef Fish Spawning Aggregations: Biology, Research and Management’. (Eds Y. S. de Mitcheson and P. L. Colin.) pp. 490–496. (Fish & Fisheries Series 35, Springer: New York.)

Hamilton, R. J., Adams, S., and Choat, J. H. (2008). Sexual development and reproductive demography of the green humphead parrotfish (Bolbometopon muricatum) in the Solomon Islands. Coral Reefs 27, 153–163.
Sexual development and reproductive demography of the green humphead parrotfish (Bolbometopon muricatum) in the Solomon Islands.Crossref | GoogleScholarGoogle Scholar |

Hoey, A. S., and Bellwood, D. R. (2008). Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27, 37–47.
Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Kalish, J. M. (1993). Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters 114, 549–554.
Pre- and post-bomb radiocarbon in fish otoliths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFKqs7k%3D&md5=8a1e4d175e6e6cabfa7f41cad18b7976CAS |

Kilada, R., Campana, S. E., and Roddick, D. (2007). Validated age, growth and mortality estimates of the ocean quahog (Arctica islandica) in the western Atlantic. ICES Journal of Marine Science 64, 31–38.

Knutson, D., and Buddemeier, R. (1973). ‘Radiocarbon Contamination of the Marine Environment.’ (International Atomic Energy Agency: Vienna.)

Nardi, K., Newman, S. J., Moran, M. J., and Jones, G. P. (2006). Vital demographic statistics and management of the baldchin groper (Choerodon rubescens) from the Houtman Abrohos Islands. Marine and Freshwater Research 57, 485–496.
Vital demographic statistics and management of the baldchin groper (Choerodon rubescens) from the Houtman Abrohos Islands.Crossref | GoogleScholarGoogle Scholar |

Neilson, J. D., and Campana, S. E. (2008). A validated description of age and growth of western Atlantic bluefin tuna (Thunnus thynnus). Canadian Journal of Fisheries and Aquatic Sciences 65, 1523–1527.
A validated description of age and growth of western Atlantic bluefin tuna (Thunnus thynnus).Crossref | GoogleScholarGoogle Scholar |

Nozaki, Y., Rye, D. M., Turekian, K. K., and Dodge, R. E. (1978). A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophysical Research Letters 5, 825–828.
A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXpsVek&md5=f2ddadd7b58bfde2c776cf91be8bab3aCAS |

Passerotti, M., Andrews, A. H., Carlson, J., Wintner, S., Goldman, K., and Natanson, L. (2014). Maximum age and missing time in the vertebrae of sand tiger shark (Carcharias taurus): validated lifespan from bomb radiocarbon dating in the western North Atlantic and southwestern Indian Oceans. Marine and Freshwater Research 65, 674–687.
Maximum age and missing time in the vertebrae of sand tiger shark (Carcharias taurus): validated lifespan from bomb radiocarbon dating in the western North Atlantic and southwestern Indian Oceans.Crossref | GoogleScholarGoogle Scholar |

Polach, H. A., McLean, R. F., Caldwell, J. R., and Thom, B. G. (1978). Radiocarbon ages from the northern Great Barrier Reef. Philosophical Transactions of the Royal Society of London. Series A 291, 139–158.
Radiocarbon ages from the northern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXis1Glsg%3D%3D&md5=e8b6b46a331fb8e203ddfedf26ce722cCAS |

Polach, H. A., McLean, R. F., Thom, B. G., Stoddart, D. R., and Hopley, D. (1981). ANU radiocarbon date list VIII. Radiocarbon 23, 1–13.

Roark, E. B., Guilderson, T. P., Dunbar, R. B., and Ingram, B. L. (2006). Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Marine Ecology Progress Series 327, 1–14.
Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Sgtbc%3D&md5=1fc9658a590c15e128725353a96be4d3CAS |

Russell, B. (Grouper & Wrasse Specialist Group) (2004). Cheilinus undulatus. In ‘IUCN 2012. IUCN Red List of Threatened Species. Version 2013.2’. Available at http://www.iucnredlist.org/details/4592/0 [Verified 9 October 2014].

Sadovy, Y., Kublicki, M., Labrosse, P., Letourneur, Y., Lokani, P., and Donaldson, T. J. (2003). The humphead wrasse, Cheilinus undulatus: synopsis of a threatened and poorly known giant coral reef fish. Reviews in Fish Biology and Fisheries 13, 327–364.
The humphead wrasse, Cheilinus undulatus: synopsis of a threatened and poorly known giant coral reef fish.Crossref | GoogleScholarGoogle Scholar |

Sadovy de Mitcheson, Y., Liu, M., and Suharti, S. (2010). Gonadal development in a giant threatened reef fish, the humphead wrasse Cheilinus undulatus, and its relationship to international trade. Journal of Fish Biology 77, 706–718.
| 1:STN:280:DC%2BC3cjktFOntQ%3D%3D&md5=3e1337a5a012ae3373b15debd221365aCAS | 20701649PubMed |

Schmidt, A., Burr, G. S., Taylor, F. W., O’Malley, J., and Beck, J. W. (2004). A semiannual radiocarbon record of a modern coral from the Solomon Islands. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms 223–224, 420–427.
A semiannual radiocarbon record of a modern coral from the Solomon Islands.Crossref | GoogleScholarGoogle Scholar |

Sherwood, O. A., Jamieson, R. E., Edinger, E. N., and Wareham, V. E. (2008). Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: examination of trophic, depth and spatial effects. Deep-sea Research. Part I, Oceanographic Research Papers 55, 1392–1402.
Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: examination of trophic, depth and spatial effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOiu7%2FL&md5=520d9a4873900f3292706de4bbd9e5e2CAS |

Stewart, R. E. A., Campana, S. E., Jones, C. M., and Stewart, B. E. (2006). Bomb radiocarbon dating calculated beluga (Delphinapterus leucas) age estimates. Canadian Journal of Zoology 84, 1840–1852.
Bomb radiocarbon dating calculated beluga (Delphinapterus leucas) age estimates.Crossref | GoogleScholarGoogle Scholar |

Stuiver, M., and Polach, H. A. (1977). Discussion: reporting of 14C data. Radiocarbon 19, 355–363.