Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Lysogenic infection in sub-tropical freshwater cyanobacteria cultures and natural blooms

Lisa M. Steenhauer A B E , Peter C. Pollard A , Corina P. D. Brussaard B C and Christin Säwström A D
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, School of Environment, Griffith University, Nathan, Qld, Australia.

B Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, Texel, Netherlands.

C Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.

D Centre for Marine Ecosystem Research, School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.

E Corresponding author. Email: lisa.steenhauer@nioz.nl

Marine and Freshwater Research 65(7) 624-632 https://doi.org/10.1071/MF13094
Submitted: 10 April 2013  Accepted: 8 October 2013   Published: 7 May 2014

Abstract

Lysogeny has been reported for a few freshwater cyanobacteria cultures, but it is unknown how prevalent it is in freshwater cyanobacteria in situ. Here we tested for lysogeny in (a) cultures of eight Australian species of subtropical freshwater cyanobacteria; (b) seven strains of one species: Cylindrospermopsis raciborskii; and (c) six cyanobacterial blooms in drinking water reservoirs in South East Queensland, Australia. Lysogenic infection in the cyanobacteria was induced through mitomycin C addition. By measuring the decline in host cell numbers and the concomitant increase in cyanophages over the course of the experiment, we observed lysogenic infection in five of the eight species of cyanobacteria (i.e. Nodularia spumigena, Anabaena circinalis, Anabaenopsis arnoldii, Aphanizomenon ovalisporum, Microcystis botrys, Microcystis aeruginosa, C. raciborskii and Anabaena spp., and in four of the seven strains of C. raciborskii) but only in two of the six natural cyanobacteria blooms. Lysogeny dominated laboratory culture strains whereas in natural blooms of cyanobacteria few species were lysogenic (i.e. not mitomycin C inducible). Thus, lysogenic laboratory cultures may not necessarily reflect the genetics nor the physiology of a natural cyanobacterial population, and more information on both forms is needed to understand better how cyanobacteria behave and exist in their natural habitat.

Additional keywords: cyanobacteria, cyanophage, lysogeny, mitomycin C, virus.


References

Allen, M. M., and Hutchison, F. (1976). Effect of some environmental factors on cyanophage AS-1 development in Anacystis nidulans. Archives of Microbiology 110, 55–60.
Effect of some environmental factors on cyanophage AS-1 development in Anacystis nidulans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlvV2itrg%3D&md5=e8f5834eab5323a00ceddfd9061f5956CAS | 828019PubMed |

Bolch, C., and Blackburn, S. (1996). Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology 8, 5–13.
Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz.Crossref | GoogleScholarGoogle Scholar |

Brussaard, C. P. D., and Martinez, J. M. (2008). Algal bloom viruses. Plant Viruses 2, 1–13.

Brüssow, H., Canchaya, C., and Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiology and Molecular Biology Reviews 68, 560–602.
Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion.Crossref | GoogleScholarGoogle Scholar | 15353570PubMed |

Canchaya, C., Fournous, G., and Brussow, H. (2004). The impact of prophages on bacterial chromosomes. Molecular Microbiology 53, 9–18.
The impact of prophages on bacterial chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFensb0%3D&md5=aad8b941f2ce0ce30f08933143a8797eCAS | 15225299PubMed |

Chorus, I., and Bartram, J. (eds) (1999) Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. (E & FN Spon, London, UK, on behalf of the World Health Organization, Geneva, Switzerland.).

Clokie, M. R. J., and Mann, N. H. (2006). Marine cyanophages and light. Environmental Microbiology 8, 2074–2082.
Marine cyanophages and light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisl2itA%3D%3D&md5=0754729c583010b9091bf6ebbd67263eCAS |

Dillon, A., and Parry, J. D. (2008). Characterization of temperate cyanophages active against freshwater phycocyanin-rich Synechococcus species. Freshwater Biology 53, 1253–1261.
Characterization of temperate cyanophages active against freshwater phycocyanin-rich Synechococcus species.Crossref | GoogleScholarGoogle Scholar |

Franche, C. (1987). Isolation and characterization of a temperate cyanophage for a tropical Anabaena strain. Archives of Microbiology 148, 172–177.
Isolation and characterization of a temperate cyanophage for a tropical Anabaena strain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlslahtL0%3D&md5=5d2e597c87280aadaac7a88dc34c07b9CAS |

Gao, E. B., Yuan, X. P., Li, R. H., and Zhang, Q. Y. (2009). Isolation of a novel cyanophage infectious to the filamentous cyanobacterium Planktothrix agardhii (Cyanophyceae) from Lake Donghu, China. Aquatic Microbial Ecology 54, 163–170.
Isolation of a novel cyanophage infectious to the filamentous cyanobacterium Planktothrix agardhii (Cyanophyceae) from Lake Donghu, China.Crossref | GoogleScholarGoogle Scholar |

Havens, K. E. (2008). Chapter 33: Cyanobacteria blooms: effects on aquatic ecosystems. In ‘Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs’ (Ed. H.K. Hudnell).. pp. 317–381. (Springer: New York, USA)

Hewson, I., O’Neil, J. M., and Dennison, W. C. (2001). Virus-like particles associated with Lyngbya majuscula (Cyanophyta; Oscillatoriacea) bloom decline in Moreton Bay, Australia. Aquatic Microbial Ecology 25, 207–213.
Virus-like particles associated with Lyngbya majuscula (Cyanophyta; Oscillatoriacea) bloom decline in Moreton Bay, Australia.Crossref | GoogleScholarGoogle Scholar |

Hewson, I., Govil, S. R., Capone, D. G., Carpenter, E. J., and Fuhrman, J. A. (2004). Evidence of Trichodesmium viral lysis and potential significance for biogeochemical cycling in the oligotrophic ocean. Aquatic Microbial Ecology 36, 1–8.
Evidence of Trichodesmium viral lysis and potential significance for biogeochemical cycling in the oligotrophic ocean.Crossref | GoogleScholarGoogle Scholar |

Khudyakov, I., and Wolk, C. P. (1996). Evidence that the hanA gene coding for HU protein is essential for heterocyst differentiation in, and cyanophage A-4(L) sensitivity of, Anabaena sp. strain PCC 7120. Journal of Bacteriology 178, 3572–3577.
| 1:CAS:528:DyaK28XjsFGlsLY%3D&md5=fcc362cd57c415a1191826b163e855c4CAS | 8655556PubMed |

Laybourn-Parry, J., Marshall, W. A., and Madan, N. J. (2007). Viral dynamics and patterns of lysogeny in saline Antarctic lakes. Polar Biology 30, 351–358.
Viral dynamics and patterns of lysogeny in saline Antarctic lakes.Crossref | GoogleScholarGoogle Scholar |

Lee, L. H., Lui, D., Platner, P. J., Hsu, S. F., Chu, T. C., Gaynor, J. J., Vega, Q. C, and Lustigman, B. K. (2006). Induction of temperate cyanophage AS-1 by heavy metal-copper. BMC Microbiology 6, 17.
Induction of temperate cyanophage AS-1 by heavy metal-copper.Crossref | GoogleScholarGoogle Scholar | 16504132PubMed |

Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M., and Chisholm, S. W. (2005). Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89.
Photosynthesis genes in marine viruses yield proteins during host infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOjurzE&md5=c055c9d908136b6b47a47d929a6ce420CAS | 16222247PubMed |

Lisle, J. T., and Priscu, J. C. (2004). The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. Microbial Ecology 47, 427–439.
The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crgt12htQ%3D%3D&md5=5f051287418623ad0809490ddab6b373CAS | 15037960PubMed |

Little, J. W. (2005). Lysogeny, prophage induction and lysogenic conversion. In ‘Phages: Role in Bacterial Pathogenesis and Biotechnology’ (Eds M.K. Waldor, D.I. Friedman and S. Lal Adhya ). pp. 37–54. (ASM Press: Washington, DC.)

McDaniel, L. D. (2011). Viruses of cyanobacteria. In ‘Studies in Viral Ecology’ (Ed. C. J. Hurst).. pp. 169–187. (John Wiley & Sons: Chichester, UK.)

McDaniel, L. D., delaRosa, M., and Paul, J. H. (2006). Temperate and lytic cyanophages from the Gulf of Mexico. Journal of the Marine Biological Association of the United Kingdom 86, 517–527.
Temperate and lytic cyanophages from the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

McDaniel, L., and Paul, J. H. (2005). Effect of nutrient addition and environmental factors on prophage induction in natural populations of marine Synechococcus species. Applied and Environmental Microbiology 71, 842–850.
Effect of nutrient addition and environmental factors on prophage induction in natural populations of marine Synechococcus species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVKgsbk%3D&md5=951611ad279d96bf38a764f1fc5848b8CAS | 15691939PubMed |

McDaniel, L., Houchin, L. A., Williamson, S. J., and Paul, J. H. (2002). Plankton blooms – Lysogeny in marine Synechococcus. Nature 415, 496.
Plankton blooms – Lysogeny in marine Synechococcus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Gis7g%3D&md5=21a1a290a504bafd61cb55db402715f5CAS | 11823851PubMed |

Miller, R. V. and Day, M. J. (2008). Contribution of lysogeny, pseudolysogeny, and starvation to phage ecology. In ‘Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses’ (Ed. S. T. Abedon ) pp. 114–146. (Cambridge University Press: Cambridge, UK.).

Ohki, K. (1999). A possible role of temperate phage in the regulation of Trichodesmium biomass. Bulletin de l’Institut océanographique Spécial no. 19, 287–291.

Ohki, K., and Fujita, Y. (1996). Occurrence of a temperate cyanophage lysogenizing the marine cyanophyte Phormidium persicinum. Journal of Phycology 32, 365–370.
Occurrence of a temperate cyanophage lysogenizing the marine cyanophyte Phormidium persicinum.Crossref | GoogleScholarGoogle Scholar |

Ortmann, A. C., Lawrence, J. E., and Suttle, C. A. (2002). Lysogeny and lytic viral production during a bloom of the cyanobacterium Synechococcus spp. Microbial Ecology 43, 225–231.
Lysogeny and lytic viral production during a bloom of the cyanobacterium Synechococcus spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Wqu7c%3D&md5=59e72416ef0f6488bc4afd29d0c27d57CAS | 12023729PubMed |

Padan, E., and Shilo, M. (1973). Cyanophages-viruses attacking blue-green algae. Microbiology and Molecular Biology Reviews 37, 343–370.
| 1:CAS:528:DyaE2cXpt12ntw%3D%3D&md5=4a4e5a5109f268aedb3e55c05c73b603CAS |

Padhy, R., and Singh, P. (1978). Lysogeny in the blue-green alga Nostoc muscorum. Archives of Microbiology 117, 265–268.
Lysogeny in the blue-green alga Nostoc muscorum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlt1Gqu7s%3D&md5=e11617dbc446f075fddee5236af09031CAS |

Paerl, H. W., and Huisman, J. (2008). Climate – Blooms like it hot. Science 320, 57–58.
Climate – Blooms like it hot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFCqurk%3D&md5=436756c3600e0e14104d2a7e575dd2b8CAS | 18388279PubMed |

Paerl, H. W., and Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research 46, 1349–1363.
Climate change: Links to global expansion of harmful cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFWntrc%3D&md5=355082b81161d03e8e591a9fd264354aCAS | 21893330PubMed |

Patel, A., Noble, R. T., Steele, J. A., Schwalbach, M. S., Hewson, I., and Fuhrman, J. A. (2007). Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nature Protocols 2, 269–276.
Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGntbrL&md5=a55eda691b31ace6389a18fadc67ffc3CAS | 17406585PubMed |

Paul, J. H. (2008). Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? The ISME Journal 2, 579–589.
Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFejt7Y%3D&md5=99b5272e0c33634cab46411f8dc2d00eCAS | 18521076PubMed |

Paul, J. H. and Weinbauer, M. G. (2010). Detection of lysogeny in marine environments. In ‘Manual of Aquatic Viral Ecology’. pp. 30–33. (Eds S. W. Wilhelm, M. G. Weinbauer and C. A. Suttle ). (American Society of Limnology and Oceanography: TX, USA)

Pollard, P. C., and Young, L. M. (2010). Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia. Acta Oecologica 36, 114–119.
Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia.Crossref | GoogleScholarGoogle Scholar |

Saker, M. L., and Griffiths, D. J. (2000). The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39, 349–354.
The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Saker, M. L., and Neilan, B. A. (2001). Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia. Applied and Environmental Microbiology 67, 1839–1845.
Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1egtb0%3D&md5=8e9d3bef0d02e6e35c5a56f79e400ee3CAS | 11282641PubMed |

Säwström, C., Anesio, M. A., Graneli, W., and Laybourn-Parry, J. (2007). Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes. Microbial Ecology 53, 1–11.
Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes.Crossref | GoogleScholarGoogle Scholar | 17075732PubMed |

Sedmak, B., and Carmeli, S. Sedmak, B., and Carmeli, S. (2008). “Non-toxic” cyclic peptides induce lysis of cyanobacteria – an effective cell population density control mechanism in cyanobacterial blooms. Microbial Ecology 56, 201–209.
“Non-toxic” cyclic peptides induce lysis of cyanobacteria – an effective cell population density control mechanism in cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOnsbo%3D&md5=9c9631e9e267ff92394ec0b21f96807aCAS | 18008101PubMed |

Sedmak, B., Carmeli, S., Pompe-Novak, M., Tušek-Žnidarič, M., Grach-Pogrebinsky, O., Eleršek, T., Žužek, M. C., and Bubik, A. Sedmak, B., Carmeli, S., Pompe-Novak, M., Tušek-Žnidarič, M., Grach-Pogrebinsky, O., Eleršek, T., Žužek, M. C., and Bubik, A. (2009). Cyanobacterial cytoskeleton immunostaining: the detection of cyanobacterial cell lysis induced by planktopeptin BL1125. Journal of Plankton Research 31, 1321–1330.
Cyanobacterial cytoskeleton immunostaining: the detection of cyanobacterial cell lysis induced by planktopeptin BL1125.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ojt7vK&md5=ccc3d24d13586c0edfee50fa2713d326CAS |

Sigee, D. C. (2005). ‘Freshwater Microbiology: Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environment’. (John Wiley and Sons: Chichester, UK)

Suttle, C. A. (2000). Ecological, evolutionary, and geochemical consequences of viral infection of cyanobacteria and eukaryotic algae. In ‘Viral Ecology’ (Ed. C. J. Hurst). pp. 247–296. (Academic Press, San Diego, CA.).

Suttle, C. A. (2005). Viruses in the sea. Nature 437, 356–361.
Viruses in the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFOrtLY%3D&md5=7f9c444f69659ee960d759347984e3a1CAS | 16163346PubMed |

Thompson, A. S., Rhodes, J. C., and Pettman, I. (1988). ‘Culture Collection of Algae and Protozoa. Catalogue of Strains’, 5 edn. (Freshwater Biology Association: Ambleside, UK)

Tucker, S., and Pollard, P. (2005). Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Applied and Environmental Microbiology 71, 629–635.
Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVKgsrc%3D&md5=3f4476b9c8a70fa4a7f056faf8de1c2fCAS | 15691911PubMed |

Weinbauer, M. G., Rowe, J. M. and Wilhelm, S. W. (2010). Determining rates of virus production in aquatic systems by the virus reduction approach. In ‘Manual of Aquatic Viral Ecology’. pp. 1–8. (Eds S. W. Wilhelm, M. G. Weinbauer and C. A. Suttle.) (American Society of Limnology and Oceanography: TX.)

Weinbauer, M. G., Hornák, K., Jezbera, J., Nedoma, J., Dolan, J. R., and Šimek, K. (2007). Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environmental Microbiology 9, 777–788.
Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1GmsLY%3D&md5=1fcb3f7b3608abee4b29a9f86e72b563CAS | 17298376PubMed |

Wetzel, R. G., and Likens, G. E. (2000). ‘Limnological Analyses’. (Springer-Verlag: New York, USA)

Wommack, K. E., and Colwell, R. R. (2000). Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews 64, 69–114.
Virioplankton: viruses in aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ntF2jsw%3D%3D&md5=be8ae8f78b602a5fafa838a017d7b4f2CAS | 10704475PubMed |

Yoshida, T., Takashima, Y., Tomaru, Y., Shirai, Y., Takao, Y., Hiroishi, S., and Nagasaki, K. (2006). Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology 72, 1239–1247.
Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1Ghtrg%3D&md5=3f1fe1335bc7ea442f9a50bdea0e6884CAS | 16461672PubMed |