Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH FRONT

Water-quality issues in Ramsar wetlands

Jos T. A. Verhoeven
+ Author Affiliations
- Author Affiliations

Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. Email: j.t.a.verhoeven@uu.nl

Marine and Freshwater Research 65(7) 604-611 https://doi.org/10.1071/MF13092
Submitted: 10 April 2013  Accepted: 23 January 2014   Published: 20 June 2014

Abstract

Wetland water chemistry, i.e. the concentrations of macro ions in the water, encompasses an important component of the ecological character of a wetland. Of these ions, nutrients play a very active role because they are exchanged between living organisms and the environment via cycling processes involving plants, animals and microbes in the ecosystem. Because many wetlands in agricultural or densely populated parts of the earth are subject to enlarged nutrient inputs, their ecological character may be affected. At the same time, nutrients are processed and retained from the through-flowing water. The present article summarises these aspects of water quality in wetlands and reflects on the development of guidance for managers of wetlands listed as internationally important under the Ramsar Convention. Protection of the water-chemistry characteristics as part of the ecological character of the wetland, consequences of nutrient loading and opportunities for nutrient retention and their limitations are critically evaluated.

Additional keywords: eutrophication, nutrients, water chemistry, water management, wetland conservation.


References

Arheimer, B., Andersson, L., Larsson, M., Lindstrom, G., Olsson, J., and Pers, B. C. (2004). Modelling diffuse nutrient flow in eutrophication control scenarios. Water Science and Technology 49, 37–45.
| 1:CAS:528:DC%2BD2cXktVOlsbo%3D&md5=79a21bdf9848df7b7063fc20a3461f96CAS | 15053097PubMed |

Bobbink, R., and Lamers, L. P. M. (2002). Effects of increased nitrogen deposition. In ‘Air Pollution and Plant Life’. (Eds J. N. B. Bell, M. Treshow.) pp. 201–235. (John Wiley & Sons: London, UK.)

Bobbink, R., Hornung, M., and Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86, 717–738.
The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVWisb0%3D&md5=ed4ad2c4d196b973424a792f5d085a61CAS |

Boesch, D. F. (2002). Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries 25, 886–900.
Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands. Wetlands research program technical report WRP-DE-4, US Army Corps of Engineers, Waterways Experiment Station, Washington, DC.

Broch, E. S., and Yake, W. (1969). A modification of Maucha’s ionic diagram to include ionic concentrations. Limnology and Oceanography 14, 933–935.
| 1:CAS:528:DyaE3cXhtFCrsrw%3D&md5=c2beea3e1e4edc94d05ae69a5fe0bf6aCAS |

Cowardin L. M., V. Carter, F. C. Golet, and E. T. LaRoe (1979). Classification of wetlands and deepwater habitats of the United States, Fish and Wildlife Service. US Department of the Interior FWS/OBS-79/31. Fish and Wildlife Service, Office of Biological Services, Washington, DC.

Davidson, N. C., and Finlayson, C. M. (2007). Developing tools for wetland management: inventory, assessment and monitoring – gaps and the application of satellite-based radar. Aquatic Conservation: Marine and Freshwater Ecosystems 17, 219–228.
Developing tools for wetland management: inventory, assessment and monitoring – gaps and the application of satellite-based radar.Crossref | GoogleScholarGoogle Scholar |

Day, J. W., Ko, J. Y., Rybczyk, J., Sabins, D., Bean, R., Berthelot, G., Brantley, C., Cardoch, L., Conner, W., Day, J. N., Englande, A. J., Feagley, S., Hyfield, E., Lane, R., Lindsey, J., Mistich, J., Reyes, E., and Twilley, R. (2004). The use of wetlands in the Mississippi Delta for wastewater assimilation: a review. Ocean and Coastal Management 47, 671–691.
The use of wetlands in the Mississippi Delta for wastewater assimilation: a review.Crossref | GoogleScholarGoogle Scholar |

Den Hartog, C. (1974). Brackish-water classification, its development and problems. Hydrobiological Bulletin (Amsterdam) 8, 15–28.
Brackish-water classification, its development and problems.Crossref | GoogleScholarGoogle Scholar |

DuRietz, E. (1954). Die Mineral Bodenwasserzeigergrenze als Grundlage einer naturlichen Zweigliederung der Nord- und Mitteleuropaische Moore. Vegetatio 5, 571–585.

Finlayson, C. M., Davidson, N. C., Pritchard, D., Milton, G. R., and MacCay, H. (2011). The Ramsar Convention and ecosystem-based approaches to the wise use and sustainable development of wetlands. Journal of International Wildlife Law and Policy 14, 176–198.

Groffman, P. M., and Crawford, M. K. (2003). Denitrification potential in urban riparian zones. Journal of Environmental Quality 32, 1144–1149.
| 1:CAS:528:DC%2BD3sXktVGhsL0%3D&md5=0140151c3e586326fe45a44f0e9b7c31CAS | 12809317PubMed |

Hagerthey, S. E., Newman, S., Rutchey, K., Smith, E. P., and Godin, J. (2008). Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecological Monographs 78, 547–565.
Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication.Crossref | GoogleScholarGoogle Scholar |

Hecky, R. E., Bootsma, H. A., and Kingdon, M. L. (2003). Impact of land use on sediment and nutrient yields to Lake Malawi/Nyasa (Africa). Journal of Great Lakes Research 29, 139–158.
Impact of land use on sediment and nutrient yields to Lake Malawi/Nyasa (Africa).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVGmsbs%3D&md5=5c824f79d196f273868af9e80a58570aCAS |

Hefting, M. M., Bobbink, R., and De Caluwe, H. (2003). Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality 32, 1194–1203.
| 1:CAS:528:DC%2BD3sXlslGjtbg%3D&md5=78d2389d0a168b4d869c407cde69690bCAS | 12931872PubMed |

Hefting, M. M., Clement, J. C., Dowrick, D., Cosandey, A. C., Bernal, S., Cimpian, C., Tatur, A., Burt, T. P., and Pinay, G. (2004). Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67, 113–134.
| 1:CAS:528:DC%2BD2cXhtFSju7o%3D&md5=b1f6cb0e1518a0916f927be23792fb54CAS |

Hefting, M. M., van den Heuvel, R. N., and Verhoeven, J. T. A. (2013). Wetlands in agricultural landscapes for nitrogen attenuation and biodiversity enhancement: opportunities and limitations. Ecological Engineering 56, 5–13.
Wetlands in agricultural landscapes for nitrogen attenuation and biodiversity enhancement: opportunities and limitations.Crossref | GoogleScholarGoogle Scholar |

Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., and Zhu, Z. L. (1996). Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35, 75–139.
Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVGjsg%3D%3D&md5=d983e08e87534e54e774a3a678a03a20CAS |

Jeppesen, E., Jensen, J. P., Jensen, C., Faafeng, B., Hessen, D. O., Sondergaard, M., Lauridsen, T., Brettum, P., and Christoffersen, K. (2003). The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6, 313–325.
The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks12rurw%3D&md5=440a6e1391e09bb2750db0aea77c4635CAS |

Jickells, T. (2005). External inputs as a contributor to eutrophication problems. Journal of Sea Research 54, 58–69.
External inputs as a contributor to eutrophication problems.Crossref | GoogleScholarGoogle Scholar |

Juston, J. M., and DeBusk, T. A. (2011). Evidence and implications of the background phosphorus concentration of submerged aquatic vegetation wetlands in stormwater treatment areas for Everglades restoration. Water Resources Research 47, W01511.
Evidence and implications of the background phosphorus concentration of submerged aquatic vegetation wetlands in stormwater treatment areas for Everglades restoration.Crossref | GoogleScholarGoogle Scholar |

Kadlec, R. H., and Wallace, S. (2008). ‘Treatment Wetlands.’ (Taylor and Francis: Boca Raton, FL.)

Keddy, P. A. (1989). Effects of competition from shrubs on herbaceous wetland plants: a 4-year field experiment. Canadian Journal of Botany 67, 708–716.
Effects of competition from shrubs on herbaceous wetland plants: a 4-year field experiment.Crossref | GoogleScholarGoogle Scholar |

Keddy, P. (2005). Putting the plants back into plant ecology: six pragmatic models for understanding and conserving plant diversity. Annals of Botany 96, 177–189.
Putting the plants back into plant ecology: six pragmatic models for understanding and conserving plant diversity.Crossref | GoogleScholarGoogle Scholar | 15944176PubMed |

Malmer, N. (1986). Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64, 375–383.
Vegetational gradients in relation to environmental conditions in northwestern European mires.Crossref | GoogleScholarGoogle Scholar |

Maltby, E. (2007). ‘Functional Assessment of Wetlands.’ (Woodhead Publishing: Cambridge, UK.)

Maucha, R. (1932). Hydrochemische Metoden in der Limnologie. Binnengewasser 12, 1–173.

Metzeling, L., Tiller, D., Newall, P., Wells, F., and Reed, J. (2006). Biological objectives for the protection of rivers and streams in Victoria, Australia. Hydrobiologia 572, 287–299.
Biological objectives for the protection of rivers and streams in Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |

Mitsch, W. J., and Gosselink, J. G. (2007). ‘Wetlands.’ (Wiley: London.)

Mitsch, W. J., Day, J. W., Zhang, L., and Lane, R. R. (2005). Nitrate-nitrogen retention in wetlands in the Mississippi river basin. Ecological Engineering 24, 267–278.
Nitrate-nitrogen retention in wetlands in the Mississippi river basin.Crossref | GoogleScholarGoogle Scholar |

Mitsch, W. J., Day, J. W., Gilliam, J. W., Groffman, P. M., Hey, D. L., Randall, G. W., and Wang, N. M. (2001). Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: strategies to counter a persistent ecological problem. BioScience 51, 373–388.

Neuenkamp, L., Metsoja, J. A., Norbert, M. Z., and Holzel, N. (2013). Impact of management on biodiversity–biomass relations in Estonian flooded meadows. Plant Ecology 214, 845–856.
Impact of management on biodiversity–biomass relations in Estonian flooded meadows.Crossref | GoogleScholarGoogle Scholar |

Norse, D. (2005). Non-point pollution from crop production: global, regional and national issues. Pedosphere 15, 499–508.
| 1:CAS:528:DC%2BD2MXosVertL4%3D&md5=395a990075c692ed8168a7e4459909f4CAS |

Odada, E. O., Olago, D. O., Kulindwa, K. A. A., Ntiba, M., and Wandiga, S. (2004). Mitigation of environmental problems in Lake Victoria, East Africa: causal chain and policy options analyses. Ambio 33, 13–23.
| 15083646PubMed |

Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers. Association of American Geographers 77, 118–125.
Ecoregions of the conterminous United States.Crossref | GoogleScholarGoogle Scholar |

Qualls, R. G., and Richardson, C. J. (1995). Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades. Soil Science 160, 183–198.
Forms of soil phosphorus along a nutrient enrichment gradient in the northern Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Cqsbg%3D&md5=9765f07ad52e678a9e3a45af66fa8c07CAS |

Rabalais, N. N., Turner, R. E., Dortch, Q., Wiseman, W. J., and Sen Gupta, B. K. (1996). Nutrient changes in the Mississippi river and system responses on the adjacent continental shelf. Estuaries 19, 386–407.
Nutrient changes in the Mississippi river and system responses on the adjacent continental shelf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFamsLw%3D&md5=486918f8441dfcb7a8c4fb1e72efb267CAS |

Ramsar Convention Secretariat (2010a). ‘Managing Groundwater: Guidelines for the Management of Groundwater to Maintain Wetland Ecological Character.’ 4 edn. (Ramsar Convention Secretariat: Gland, Switzerland.)

Ramsar Convention Secretariat (2010b). ‘Wise Use of Wetlands: Concepts and Approaches for the Wise Use of Wetlands.’ 4 edn. (Ramsar Convention Secretariat: Gland, Switzerland.)

Richardson, C. J., and Qian, S. S. (1999). Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environmental Science & Technology 33, 1545–1551.
Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVOksL0%3D&md5=b3b6db82c39189d8b058ce7692b3a4c7CAS |

Richardson, C. J., Qian, S., Craft, C. B., and Qualls, R. G. (1997). Predictive models for phosphorus retention in wetlands. Wetlands Ecology and Management 4, 159–175.
Predictive models for phosphorus retention in wetlands.Crossref | GoogleScholarGoogle Scholar |

Richardson, C. J., Flanagan, N. E., Ho, M. C., and Pahl, J. W. (2011). Integrated stream and wetland restoration: a watershed approach to improved water quality on the landscape. Ecological Engineering 37, 25–39.
Integrated stream and wetland restoration: a watershed approach to improved water quality on the landscape.Crossref | GoogleScholarGoogle Scholar |

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature 413, 591–596.
Catastrophic shifts in ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsleht7c%3D&md5=4c27f7b6f227654b0d772c274c8e9377CAS | 11595939PubMed |

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G. (2009). Early-warning signals for critical transitions. Nature 461, 53–59.
Early-warning signals for critical transitions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVygsbjI&md5=b2c1424767b8a626b59a9cd1d86101e1CAS | 19727193PubMed |

Schmidt-Kloiber, A., Graf, W., Lorenz, A., and Moog, O. (2006). The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory. Hydrobiologia 566, 325–342.
The AQEM/STAR taxalist – a pan-European macro-invertebrate ecological database and taxa inventory.Crossref | GoogleScholarGoogle Scholar |

Sjors, H. (1950). On the relation between vegetation and electrolytes in North Swedish mire waters. Oikos 2, 239–258.

Vaithiyanathan, P., and Richardson, C. J. (1999). Macrophyte species changes in the Everglades: examination along a eutrophication gradient. Journal of Environmental Quality 28, 1347–1358.
Macrophyte species changes in the Everglades: examination along a eutrophication gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFGkuro%3D&md5=c55a80caf8c251bd0f8216cad9539e4cCAS |

Van Dam, R. A., Finlayson, C. M., and Humphrey, C. L. (1999). Wetland risk assessment: a framework and methods for predicting and assessing change in ecological character. In ‘Techniques for Enhanced Wetland Inventory. Assessment and Monitoring’. (Eds C. M. Finlayson, A. G. Spiers.) pp. 83–118. (Supervising Scientist Group: Canberra.)

Van Wirdum, G. (1990). ‘Vegetation and Hydrology of Floating Rich-Fens.’ (Datawyse: Maastricht, The Netherlands.)

Verhoeven, J. T. A. (1992). ‘Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation.’ (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Verhoeven, J. T. A., Beltman, B., and De Caluwe, H. (1996a). Changes in plant biomass in fens in the Vechtplassen area, as related to nutrient enrichment. Netherlands Journal of Aquatic Ecology 30, 227–237.
Changes in plant biomass in fens in the Vechtplassen area, as related to nutrient enrichment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1yqsL4%3D&md5=54532a880366f9142e9778acfa71b226CAS |

Verhoeven, J. T. A., Koerselman, W., and Meuleman, A. F. M. (1996b). Nitrogen- or phosphorus-limited growth in herbaceous mire vegetation: relations with atmospheric inputs and management regimes. Trends in Ecology & Evolution 11, 494–497.
Nitrogen- or phosphorus-limited growth in herbaceous mire vegetation: relations with atmospheric inputs and management regimes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFGlsg%3D%3D&md5=8cf83a437f6a094b5b2cba21c22d4cf2CAS |

Verhoeven, J. T. A., Arheimer, B., Yin, C. Q., and Hefting, M. M. (2006). Regional and global concerns over wetlands and water quality. Trends in Ecology and Evolution 21, 96–103.

Vitt, D. H., Li, Y., and Belland, R. J. (1995). Patterns of bryophyte diversity in peatlands of continental western Canada. The Bryologist 98, 218–227.
Patterns of bryophyte diversity in peatlands of continental western Canada.Crossref | GoogleScholarGoogle Scholar |

Wickham, J. D., Riitters, K. H., Wade, T. G., and Jones, K. B. (2005). Evaluating the relative roles of ecological regions and land-cover composition for guiding establishment of nutrient criteria. Landscape Ecology 20, 791–798.
Evaluating the relative roles of ecological regions and land-cover composition for guiding establishment of nutrient criteria.Crossref | GoogleScholarGoogle Scholar |

Winter, T. C. (1977). Classification of the hydrogeologic settings of lakes in the north-central United States. Water Resources Research 13, 753–767.
Classification of the hydrogeologic settings of lakes in the north-central United States.Crossref | GoogleScholarGoogle Scholar |

WWF (2009). WWF’s Global Conservation Programme. Conservation Advisory Services, Gland, Switzerland.

Yan, W. J., Yin, C. Q., and Tang, H. X. (1998). Nutrient retention by multipond systems: mechanisms for the control of nonpoint source pollution. Journal of Environmental Quality 27, 1009–1017.
| 1:CAS:528:DyaK1cXmtl2jsrY%3D&md5=e0af8f1b1c55b695477b731fa17d137eCAS |

Yin, C. Q., and Shan, B. Q. (2001). Multipond systems: a sustainable way to control diffuse phosphorus pollution. Ambio 30, 369–375.
| 1:STN:280:DC%2BD38%2FjtFyntA%3D%3D&md5=edd0a89399ac92ad37e25da3302243e6CAS |

Yin, C. Q., Zhao, M., Jin, W. G., and Lan, Z. W. (1993). A multi-pond system as a protective zone for the management of lakes in China. Hydrobiologia 251, 321–329.
| 1:CAS:528:DyaK3sXksl2muro%3D&md5=1f056a324388dd16c948e1cefac1558cCAS |