Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Fluctuating asymmetry in fish otoliths and heterozygosity in stressful estuarine environments (West Africa)

Jacques Panfili A D , Jean-Dominique Durand A , Khady Diop A , Béatrice Gourène B and Monique Simier C
+ Author Affiliations
- Author Affiliations

A IRD, B.P. 1386, 18524 Dakar, Senegal.

B Université d’Abobo-Adjamé, 02 BP 801, Abidjan 02, Ivory Coast.

C Centre de Recherche Halieutique IFREMER/IRD, avenue Jean Monnet, B.P. 171, 34203 Sète Cedex, France.

D Corresponding author. Email: panfili@ird.fr

Marine and Freshwater Research 56(5) 505-516 https://doi.org/10.1071/MF04138
Submitted: 12 July 2004  Accepted: 2 March 2005   Published: 21 July 2005

Abstract

Fluctuating asymmetry (FA) is assumed to reflect the developmental instability caused by environmental or genetic stress. Fish otoliths represent a very good tool for investigating the consequence of different effects on FA. Otolith FA analysis, coupled with genetic analysis, has been undertaken on two common West African estuarine species, Ethmalosa fimbriata (EFI) and Sarotherodon melanotheron (SME), in two neighbouring estuaries, in order to highlight the impact of salinity on developmental stability. The Gambia estuary has a normal functioning and the Saloum estuary is inverse (saltier waters in the upper river), reaching extremely high salinities (>100 psu) and constituting severe environmental stress. Five sub-populations of EFI and six of SME were studied along a salinity gradient. The differences between right and left otoliths were estimated with image processing by measuring five dimensions (area, perimeter, diameter, rostrum and posterior radii). Analyses of genetic differentiation at three EPIC and one anonymous nuclear gene loci for EFI and six polymorphic enzymatic loci for SME were carried out to measure the level of heterozygosity. Absolute FA in all otolith traits examined was unaffected by gender but increased significantly with fish size. Size-corrected absolute FA did not show any significant difference among sites differing largely in salinity, although a higher asymmetry in otolith area was recorded in the saltiest site. These findings suggest that otolith asymmetry is a poor indicator of osmotic stress. The individual heterozygosity level did not seem to have an effect on otolith FA for either species, even though a slight correlation appeared with otolith area or perimeter. Otolith FA cannot be considered to be a useful indicator for estimating changes linked with environmental or genetic stress in these estuaries.

Extra keywords: bio-indicator, environmental stress, Ethmalosa fimbriata, Sarotherodon melanotheron.


Acknowledgments

We would like to acknowledge O. ‘Petit’ Diouf, J. Raffray and O. Sadio for their help during samplings. We are also very grateful to the fishermen in the Saloum, A. Diop, S. Thiam, A. Sarr, and I. Fall, and in Gambia, F. Dramme, I. Jammeh and S. Guisse. We specially thank B. Guinand (Montpellier University II, France) for his help with the bibliography, and finally G. Begg and two anonymous reviewers for very constructive comments.


References

Albaret, J. J. , Simier, M. , Darboe, F. S. , Ecoutin, J. M. , Raffray, J. , and Tito de Morais, L. (2004). Fish diversity and distribution in the Gambia Estuary, West Africa, in relation to environmental variables. Aquatic Living Resources 17, 35–46.
Crossref | GoogleScholarGoogle Scholar | Belkhir K., Borsa P., Raufaste N., Chikhi L., and Bonhomme F. (2000). ‘GENETIX version 4.02, logiciel sous WINDOWSTM pour la génétique des populations.’ (Laboratoire Génome et Populations, Univ. Montpellier 2: Montpellier.)

Bergstrom, C. A. , and Reimchen, T. E. (2000). Functional implications of fluctuating asymmetry among endemic populations of Gasterosteus aculeatus. Behaviour 137(Part 7–8), 1097–1112.
Crossref | GoogleScholarGoogle Scholar | Blaber S. J. M. (1997). ‘Fish and Fisheries of Tropical Estuaries.’ (Chapman & Hall: London.)

Eeva, T. , Tanhuanpaa, S. , Rabergh, C. , Airaksinen, S. , Nikinmaa, M. , and Lehikoinen, E. (2000). Biomarkers and fluctuating asymmetry as indicators of pollution-induced stress in two hole-nesting passerines. Functional Ecology 14, 235–243.
Crossref | GoogleScholarGoogle Scholar | Folkvord A., and Mosegaard E. (2002). Growth and growth analysis. In ‘Manual of Fish Sclerochronology’. (Eds J. Panfili, H. de Pontual, H. Troadec and P. J. Wright.) pp. 146–166. (IFREMER-IRD Editions: Brest, France.)

Folkvord, A. , Blom, G. , Johannessen, A. , and Moksness, E. (2000). Growth-dependent age estimation in herring (Clupea harengus L.) larvae. Fisheries Research 46, 91–103.
Crossref | GoogleScholarGoogle Scholar | Palmer A. R. (1994) Fluctuating asymmetry analyses: a primer. In ‘Developmental Instability: Its Origins and Evolutionary Implications’. (Ed. T. A. Markow.) pp. 335–364. (Kluwer Academic Publishers: Dordrecht.)

Panfili, J. , Durand, J.-D. , Mbow, A. , Guinand, B. , Diop, K. , Kantoussan, J. , Thior, D. , Thiaw, O. T. , and Laë, R. (2004a). Influence of salinity on the life history traits of the bonga shad Ethmalosa fimbriata (Pisces, Clupeidae): comparison between the Gambia and Saloum estuaries. Marine Ecology Progress Series 270, 241–257.
Pasteur N., Pasteur G., Bonhomme F., Catalan J., and Britton-Davidian J. (1988). ‘Practical Isoenzyme Genetics.’ (Ellis Horwood Limited: New York.)

Pomory, C. M. (1997). Fluctuating asymmetry: biological relevance or statistical noise? Animal Behaviour 53, 225–227.
Crossref | GoogleScholarGoogle Scholar |

Rasmuson, M. (2002). Fluctuating asymmetry – indicator of what? Hereditas 136, 177–183.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reimchen, T. E. , and Nosil, P. (2001). Lateral plate asymmetry, diet and parasitism in threespine stickleback. Journal of Evolutionary Biology 14, 632–645.
Crossref | GoogleScholarGoogle Scholar |

Sasal, P. , and Pampoulie, C. (2000). Asymmetry, reproductive success and parasitism of Pomatoschistus microps in a French lagoon. Journal of Fish Biology 57, 382–390.
Crossref | GoogleScholarGoogle Scholar |

Simier, M. , Blanc, L. , Aliaume, C. , Diouf, P. S. , and Albaret, J. J. (2004). Spatial and temporal structure of fish assemblages in an “inverse estuary”, the Sine Saloum system (Senegal). Estuarine, Coastal and Shelf Science 59, 69–86.
Crossref | GoogleScholarGoogle Scholar |

Simmons, L. W. , Tomkins, J. L. , and Manning, J. T. (1995). Sampling bias and fluctuating asymmetry. Animal Behaviour 49, 1697–1699.
Crossref | GoogleScholarGoogle Scholar |

Somarakis, S. , Kostikas, I. , and Tsimenides, N. (1997a). Fluctuating asymmetry in the otoliths of larval fish as an indicator of condition: conceptual and methodological aspects. Journal of Fish Biology 51, 30–38.Supplement A


Somarakis, S. , Kostikas, I. , Peristeraki, N. , and Tsimenides, N. (1997b). Fluctuating asymmetry in the otoliths of larval anchovy Engraulis encrasicolus and the use of developmental instability as an indicator of condition in larval fish. Marine Ecology Progress Series 151, 191–203.


Van Dongen, S. , and Lens, L. (2000). Symmetry, size and stress. Trends in Ecology & Evolution 15, 330–331.
Crossref | GoogleScholarGoogle Scholar |

Weir, B. S. , and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.


Windig, J. J. , and Nylin, S. (2000). How to compare fluctuating asymmetry of different traits. Journal of Evolutionary Biology 13, 29–37.
Crossref | GoogleScholarGoogle Scholar |