Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
EDITORIAL

Cyanobacteria in inland waters: new monitoring, reporting, modelling and ecological research

Simon M. Mitrovic https://orcid.org/0000-0002-5528-2215 A D , Tsuyoshi Kobayashi https://orcid.org/0000-0002-3641-4120 B and Daniel L. Roelke https://orcid.org/0000-0002-3166-3793 C
+ Author Affiliations
- Author Affiliations

A Freshwater and Estuarine Research Group, School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.

B Science Division, Department of Planning, Industry and Environment, PO Box 29, Lidcombe, NSW 1825, Australia.

C Department of Marine Biology, Texas A&M University—Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA.

D Corresponding author. Email: simon.mitrovic@uts.edu.au

Marine and Freshwater Research 71(5) i-iv https://doi.org/10.1071/MFv71n5_ED
Published: 27 April 2020

Additional keywords: blooms, cyanotoxins, management, toxins.


References

Abbas, F., Porojan, C., Mowe, M., Lehane, M., Mitrovic, S., Lim, R., Yeo, D., and Furey, A. (2020). Sample extraction and LC-MS/MS method development and validation for the quantitative detection of cyanobacterial hepatotoxins and neurotoxins in Singapore’s reservoirs. Marine and Freshwater Research 71, 673–688.
Sample extraction and LC-MS/MS method development and validation for the quantitative detection of cyanobacterial hepatotoxins and neurotoxins in Singapore’s reservoirs.Crossref | GoogleScholarGoogle Scholar |

Bartram, J., and Chorus, I. (Eds) (1999). ‘Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management.’ (CRC Press: Boca Raton, FL, USA.)

Borges, H. D., Cicerelli, R. E., de Almeida, T., Roig, H. L., and Olivetti, D. (2020). Monitoring cyanobacteria occurrence in freshwater reservoir using semi-analytical algorithms and orbital remote sensing. Marine and Freshwater Research 71, 569–578.
Monitoring cyanobacteria occurrence in freshwater reservoir using semi-analytical algorithms and orbital remote sensing.Crossref | GoogleScholarGoogle Scholar |

Bownik, A. (2016). Harmful algae: effects of cyanobacterial cyclic peptides on aquatic invertebrates – a short review. Toxicon 124, 26–35.
Harmful algae: effects of cyanobacterial cyclic peptides on aquatic invertebrates – a short review.Crossref | GoogleScholarGoogle Scholar |

Carmichael, W. W., Azevedo, S. M., An, J. S., Molica, R. J., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw, G. R., and Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental Health Perspectives 109, 663–668.
Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins.Crossref | GoogleScholarGoogle Scholar |

Chen, Y., Qin, B., Teubner, K., and Dokulil, M. T. (2003). Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research 25, 445–453.
Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China.Crossref | GoogleScholarGoogle Scholar |

Cicerelli, R. E., Galo, M. D. L. B. T., and Roig, H. L. (2017). Multisource data for seasonal variability analysis of cyanobacteria in a tropical inland aquatic environment. Marine and Freshwater Research 68, 2344–2354.
Multisource data for seasonal variability analysis of cyanobacteria in a tropical inland aquatic environment.Crossref | GoogleScholarGoogle Scholar |

Drobac, D., Tokodi, N., Lujić, J., Marinović, Z., Subakov-Simić, G., Dulić, T., Važić, T., Nybom, S., Meriluoto, J., Codd, G. A., and Svirčev, Z. (2016). Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue. Harmful Algae 55, 66–76.
Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue.Crossref | GoogleScholarGoogle Scholar |

Drozd, A., de Tezanos Pinto, P., Fernandez, V., Bazzalo, M., Bordet, F., and Ibañez, G. (2020). Hyperspectral remote sensing monitoring of cyanobacteria blooms in a large South American reservoir: high- and medium-spatial resolution satellite algorithm simulation. Marine and Freshwater Research 71, 593–605.
Hyperspectral remote sensing monitoring of cyanobacteria blooms in a large South American reservoir: high- and medium-spatial resolution satellite algorithm simulation.Crossref | GoogleScholarGoogle Scholar |

Grover, J. P., Scott, J. T., Roelke, D. L., and Brooks, B. W. (2020). Dynamics of nitrogen-fixing cyanobacteria with heterocysts: a stoichiometric model. Marine and Freshwater Research 71, 644–658.
Dynamics of nitrogen-fixing cyanobacteria with heterocysts: a stoichiometric model.Crossref | GoogleScholarGoogle Scholar |

Janssen, E. M. L. (2019). Cyanobacterial peptides beyond microcystins – a review on co-occurrence, toxicity, and challenges for risk assessment. Water Research 151, 488–499.
Cyanobacterial peptides beyond microcystins – a review on co-occurrence, toxicity, and challenges for risk assessment.Crossref | GoogleScholarGoogle Scholar |

Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., Coveney, M. F., Deneke, R., Dokulil, M. T., Foy, B., Gerdeaux, D., Hampton, S. E., Hilt, S., Kangur, K., Köhler, J., Lammens, E. H. H. R., Lauridsen, T. L., Manca, M., Miracle, M. R., Moss, B., Nõges, P., Persson, G., Phillips, G., Portielje, R., Romo, S., Schelske, C. L., Straile, D., Tatrai, I., Willén, E., and Winder, M. (2005). Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50, 1747–1771.
Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies.Crossref | GoogleScholarGoogle Scholar |

Kobayashi, T., Ralph, T. J., Sharma, P., and Mitrovic, S. M. (2020). Influence of historical inundation frequency on soil microbes (Cyanobacteria, Proteobacteria, Actinobacteria) in semi-arid floodplain wetlands. Marine and Freshwater Research 71, 617–625.
Influence of historical inundation frequency on soil microbes (Cyanobacteria, Proteobacteria, Actinobacteria) in semi-arid floodplain wetlands.Crossref | GoogleScholarGoogle Scholar |

Kudela, R. M., Palacios, S. L., Austerberry, D. C., Accorsi, E. K., Guild, L. S., and Torres-Perez, J. (2015). Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sensing of Environment 167, 196–205.
Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters.Crossref | GoogleScholarGoogle Scholar |

Li, L., Li, L., and Song, K. (2015). Remote sensing of freshwater cyanobacteria: an extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sensing of Environment 157, 9–23.
Remote sensing of freshwater cyanobacteria: an extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin.Crossref | GoogleScholarGoogle Scholar |

Lovin, L. M., and Brooks, B. W. (2020). Global scanning of anatoxins in aquatic systems: environment and health hazards, and research needs. Marine and Freshwater Research 71, 689–700.
Global scanning of anatoxins in aquatic systems: environment and health hazards, and research needs.Crossref | GoogleScholarGoogle Scholar |

Mehner, T., Benndorf, J., Kasprzak, P., and Koschel, R. (2002). Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biology 47, 2453–2465.
Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science.Crossref | GoogleScholarGoogle Scholar |

Mishra, S., Mishra, D. R., Lee, Z., and Tucker, C. S. (2013). Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: a quasi-analytical approach. Remote Sensing of Environment 133, 141–151.
Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: a quasi-analytical approach.Crossref | GoogleScholarGoogle Scholar |

Mitrovic, S. M., Oliver, R. L., Rees, C., Bowling, L. C., and Buckney, R. T. (2003). Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers. Freshwater Biology 48, 164–174.
Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers.Crossref | GoogleScholarGoogle Scholar |

Mitrovic, S. M., Pflugmacher, S., James, K. J., and Furey, A. (2004). Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquatic Toxicology 68, 185–192.
Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants.Crossref | GoogleScholarGoogle Scholar |

Mitrovic, S. M., Allis, O., Furey, A., and James, K. J. (2005). Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicology and Environmental Safety 61, 345–352.
Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta.Crossref | GoogleScholarGoogle Scholar |

Mitrovic, S. M., Hardwick, L., and Dorani, F. (2011). Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. Journal of Plankton Research 33, 229–241.
Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia.Crossref | GoogleScholarGoogle Scholar |

Moustaka-Gouni, M., Sommer, U., Katsiapi, M., and Vardaka, E. (2020). Monitoring of cyanobacteria for water quality: doing the necessary right or wrong? Marine and Freshwater Research 71, 717–724.
Monitoring of cyanobacteria for water quality: doing the necessary right or wrong?Crossref | GoogleScholarGoogle Scholar |

Mowe, M. A., Mitrovic, S. M., Lim, R. P., Furey, A., and Yeo, D. C. (2015). Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. Journal of Limnology 74, 205–224.

Müller, S., and Mitrovic, S. M. (2015). Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm. Hydrobiologia 744, 255–269.
Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm.Crossref | GoogleScholarGoogle Scholar |

Ogashawara, I., Mishra, D., Mishra, S., Curtarelli, M., and Stech, J. (2013). A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sensing 5, 4774–4798.
A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., and Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1, 27–37.
Climate change: a catalyst for global expansion of harmful cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., Fulton, R. S., Moisander, P. H., and Dyble, J. (2001). Harmful freshwater blooms, with an emphasis on cyanobacteria. The Scientific World Journal 1, 76–113.
Harmful freshwater blooms, with an emphasis on cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., Xu, H., Hall, N. S., Zhu, G., Qin, B., Wu, Y., Rossignol, K. L., Dong, L., McCarthy, M. J., and Joyner, A. R. (2014). Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa? PLoS One 9, e113123.
Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., Havens, K. E., Nathan, C., Hall, S., Otten, T. D., Zhu, M., Xu, H., Zhu, G., and Boqiang Qin, B. (2020). Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects and challenges posed by climate change. Marine and Freshwater Research 71, 579–592.
Mitigating a global expansion of toxic cyanobacterial blooms: confounding effects and challenges posed by climate change.Crossref | GoogleScholarGoogle Scholar |

Pearson, L. A., Crosbie, N. D., and Neilan, B. A. (2020). Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse Microcystis aeruginosa strains. Marine and Freshwater Research 71, 701–716.
Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse Microcystis aeruginosa strains.Crossref | GoogleScholarGoogle Scholar |

Pilotto, L. S., Douglas, R. M., Burch, M. D., Cameron, S., Beers, M., Rouch, G. J., Robinson, P., Kirk, M., Cowie, C. T., Hardiman, S., and Moore, C. (1997). Health effects of exposure to cyanobacteria (blue–green algae) during recreational water-related activities. Australian and New Zealand Journal of Public Health 21, 562–566.
Health effects of exposure to cyanobacteria (blue–green algae) during recreational water-related activities.Crossref | GoogleScholarGoogle Scholar |

Porojan, C., Abbas, F., Mowe, M., Lehane, M., Mitrovic, S., Lim, R., Yeo, D., and Furey, A. (2020). A survey of microcystins in Singapore’s reservoirs using tandem mass spectrometry (LC-MS/MS). Marine and Freshwater Research 71, 659–672.
A survey of microcystins in Singapore’s reservoirs using tandem mass spectrometry (LC-MS/MS).Crossref | GoogleScholarGoogle Scholar |

Song, Y., Liew, J. H., Sim, D. Z., Mowe, M. A., Mitrovic, S. M., Tan, H. T., and Yeo, D. C. (2019). Effects of macrophytes on lake-water quality across latitudes: a meta-analysis. Oikos 128, 468–481.
Effects of macrophytes on lake-water quality across latitudes: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Stewart, I., Seawright, A. A., and Shaw, G. R. (2008). Cyanobacterial poisoning in livestock, wild mammals and birds – an overview. In ‘Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs’. (Ed. H. K. Hudnell.) pp. 613–637. (Springer: New York, NY, USA.)

Stoyneva-Gärtner, M. P., Uzunov, B. A., Descy, J. P., Gärtner, G., Draganova, P. H., Borisova, C. I., Pavlova, V., and Mitreva, M. (2020). Pilot application of drone observations and pigment marker detection by HPLC in studies of cyanobacterial harmful algal blooms in Bulgarian inland waters. Marine and Freshwater Research 71, 606–616.
Pilot application of drone observations and pigment marker detection by HPLC in studies of cyanobacterial harmful algal blooms in Bulgarian inland waters.Crossref | GoogleScholarGoogle Scholar |

Visser, P. M., Ibelings, B. W., Bormans, M., and Huisman, J. (2016). Artificial mixing to control cyanobacterial blooms: a review. Aquatic Ecology 50, 423–441.
Artificial mixing to control cyanobacterial blooms: a review.Crossref | GoogleScholarGoogle Scholar |

Wiegand, C., and Pflugmacher, S. (2005). Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology 203, 201–218.
Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review.Crossref | GoogleScholarGoogle Scholar |

Wilk-Wozniak, E. (2020). An introduction to the ‘micronet’ of cyanoHABs: cyanobacteria, zooplankton and microorganisms: a review. Marine and Freshwater Research 71, 636–643.
An introduction to the ‘micronet’ of cyanoHABs: cyanobacteria, zooplankton and microorganisms: a review.Crossref | GoogleScholarGoogle Scholar |

Willén, E. (2001). Phytoplankton and water quality characterization: experiences from the Swedish large lakes Mälaren, Hjälmaren, Vättern and Vänern. Ambio 30, 529–537.
Phytoplankton and water quality characterization: experiences from the Swedish large lakes Mälaren, Hjälmaren, Vättern and Vänern.Crossref | GoogleScholarGoogle Scholar |

Zhao, C. S., Pan, X., Yang, S. T., Wang, X. L., Liu, X. J., Sun, Y., Yang, Y., and Pan, T. L. (2020). Drivers of cyanobacterial blooms in lakes and reservoirs in Jinan City, China. Marine and Freshwater Research 71, 626–635.
Drivers of cyanobacterial blooms in lakes and reservoirs in Jinan City, China.Crossref | GoogleScholarGoogle Scholar |