Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Monitoring cyanobacteria occurrence in freshwater reservoirs using semi-analytical algorithms and orbital remote sensing

Henrique Dantas Borges https://orcid.org/0000-0002-0729-5767 A B , Rejane Ennes Cicerelli A , Tati de Almeida A , Henrique L. Roig A and Diogo Olivetti A
+ Author Affiliations
- Author Affiliations

A Geociences Institute, University of Brasília, Campus Universitário Darcy Ribeiro ICC-Ala Central, 71910-900 Brasília, Brazil.

B Corresponding author. Email: henriquedantasborges@gmail.com

Marine and Freshwater Research 71(5) 569-578 https://doi.org/10.1071/MF18377
Submitted: 2 October 2018  Accepted: 10 February 2019   Published: 7 May 2019

Abstract

Cyanobacterial blooms pose a serious threat to the multiple uses of inland waters because of their adverse effects on the environment and human health. Monitoring cyanobacteria concentrations using traditional methods can be expensive and impractical. Recently, alternative efforts using remote sensing techniques have been successful. In particular, semi-analytical modelling approaches have been used to successfully predict chlorophyll (Chl)-a concentrations from remote sensing reflectance. The aims of this study were to test the performance of different semi-analytical algorithms in the estimation of Chl-a concentrations and the applicability of Sentinel-2 multispectral instrument (MSI) imagery, and its atmospheric correction algorithms, in the estimation of Chl-a concentrations. For our dataset, phycocyanin concentration was strongly correlated with Chl-a concentration and the inversion model of inland waters (IIMIW) semi-analytical algorithm was the best performing model, achieving a root mean square error of 4.6 mg m–3 in the prediction of Chl-a. When applying the IIMIW model to MSI data, the use of top-of-atmosphere reflectance performed better than the atmospheric correction algorithm tested. Overall, the results were satisfactory, demonstrating that even without an adequate atmospheric correction pipeline, the monitoring of cyanobacteria can be successfully achieved by applying a semi-analytical bio-optical model to MSI data.

Additional keywords: eutrophication, quasi-analytical algorithm, tropical freshwater, water quality monitoring.


References

Amé, M. V., and Wunderlin, D. A. (2005). Effects of iron, ammonium and temperature on microcystin content by a natural concentrated Microcystis aeruginosa population. Water, Air, and Soil Pollution 168, 235–248.
Effects of iron, ammonium and temperature on microcystin content by a natural concentrated Microcystis aeruginosa population.Crossref | GoogleScholarGoogle Scholar |

American Public Health Association (1989). Standard methods for the examination of water and wastewater. APHA, Washington, DC, USA.

Backer, L. C. (2002). Cyanobacterial harmful algal blooms (CyanoHABs): developing a public health response. Lake and Reservoir Management 18, 20–31.
Cyanobacterial harmful algal blooms (CyanoHABs): developing a public health response.Crossref | GoogleScholarGoogle Scholar |

Borges, H. L. F., Branco, L. H. Z., Martins, M. D., Lima, C. S., Barbosa, P. T., Lira, G. A. S. T., Bittencourt-Oliveira, M. C., and Molica, R. J. R. (2015). Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil. Harmful Algae 43, 46–57.
Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil.Crossref | GoogleScholarGoogle Scholar |

Cannizzaro, J. P., and Carder, K. L. (2006). Estimating chlorophyll-a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sensing of Environment 101, 13–24.
Estimating chlorophyll-a concentrations from remote-sensing reflectance in optically shallow waters.Crossref | GoogleScholarGoogle Scholar |

Carmichael, W. W., Azevedo, S. M. F. O., An, J. S., Molica, R. J. R., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw, G. R., and Eaglesham, G. K. (2001). Human fatalities form cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental Health Perspectives 109, 663–668.
Human fatalities form cyanobacteria: chemical and biological evidence for cyanotoxins.Crossref | GoogleScholarGoogle Scholar | 11485863PubMed |

Cheung, M. Y., Liang, S., and Lee, J. (2013). Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology 51, 1–10.
Toxin-producing cyanobacteria in freshwater: a review of the problems, impact on drinking water safety, and efforts for protecting public health.Crossref | GoogleScholarGoogle Scholar |

Chorus, I., and Bartram, J. (1999). ‘Toxic Cyanobacteria in Water: a Guide to Their Public Health Consequences, Monitoring and Management.’ (World Health Organization: Geneva, Switzerland.)

Cicerelli, R. E., Galo, M. D. L. B. T., and Roig, H. L. (2017). Multisource data for seasonal variability analysis of cyanobacteria in a tropical inland aquatic environment. Marine and Freshwater Research 68, 2344–2354.
Multisource data for seasonal variability analysis of cyanobacteria in a tropical inland aquatic environment.Crossref | GoogleScholarGoogle Scholar |

Dodds, W. K., and Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6, 155–164.
Nitrogen, phosphorus, and eutrophication in streams.Crossref | GoogleScholarGoogle Scholar |

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., and Martimort, P. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment 120, 25–36.
Sentinel-2: ESA’s optical high-resolution mission for GMES operational services.Crossref | GoogleScholarGoogle Scholar |

Gilerson, A. A., Gitelson, A. A., Zhou, J., Gurlin, D., Moses, W., Ioannou, I., and Ahmed, S. A. (2010). Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Optics Express 18, 24109–24125.
Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands.Crossref | GoogleScholarGoogle Scholar | 21164758PubMed |

Gitelson, A. A., Dall’Olmo, G., Moses, W., Rundquist, D. C., Barrow, T., Fisher, T. R., Gurlin, D., and Holz, J. (2008). A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sensing of Environment 112, 3582–3593.
A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation.Crossref | GoogleScholarGoogle Scholar |

Gons, H. J., Auer, M. T., and Effler, S. W. (2008). MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sensing of Environment 112, 4098–4106.
MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes.Crossref | GoogleScholarGoogle Scholar |

Gower, J., King, S., Borstad, G., and Brown, L. (2005). Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing 26, 2005–2012.
Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer.Crossref | GoogleScholarGoogle Scholar |

Graham, J. L., Loftin, K. A., Meyer, M. T., and Ziegler, A. C. (2010). Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environmental Science & Technology 44, 7361–7368.
Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States.Crossref | GoogleScholarGoogle Scholar |

Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., and Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology 16, 471–483.
Cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar | 29946124PubMed |

International Ocean-Colour Coordinating Group (2010). Atmospheric correction for remotely sensed ocean-colour products. (Ed. M. Wang.) Reports of the International Ocean Colour Coordinating Group, Vol. 10. (IOCCG: Dartmouth, NS, Canada.)

Izydorczyk, K., Carpentier, C., Mrówczyński, J., Wagenvoort, A., Jurczak, T., and Tarczyńska, M. (2009). Establishment of an Alert Level Framework for cyanobacteria in drinking water resources by using the Algae Online Analyser for monitoring cyanobacterial chlorophyll-a. Water Research 43, 989–996.
Establishment of an Alert Level Framework for cyanobacteria in drinking water resources by using the Algae Online Analyser for monitoring cyanobacterial chlorophyll-a.Crossref | GoogleScholarGoogle Scholar | 19101006PubMed |

Janke, B. D., Finlay, J. C., and Hobbie, S. E. (2017). Trees and streets as drivers of urban stormwater nutrient pollution. Environmental Science & Technology 51, 9569–9579.
Trees and streets as drivers of urban stormwater nutrient pollution.Crossref | GoogleScholarGoogle Scholar |

Jorge, D. S. F., Barbosa, C. C. F., De Carvalho, L. A. S., Affonso, A. G., Lobo, F. D. L., and Novo, E. M. L. (2017). SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sensing 9, 644.
SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes.Crossref | GoogleScholarGoogle Scholar |

Kudela, R. M., Palacios, S. L., Austerberry, D. C., Accorsi, E. K., Guild, L. S., and Torres-Perez, J. (2015). Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sensing of Environment 167, 196–205.
Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters.Crossref | GoogleScholarGoogle Scholar |

Kutser, T. (2004). Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography 49, 2179–2189.
Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing.Crossref | GoogleScholarGoogle Scholar |

Kutser, T. (2012). The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sensing of Environment 123, 334–338.
The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters.Crossref | GoogleScholarGoogle Scholar |

Lee, Z., Lubac, B., Werdell, J., and Arnone, R. (2009). An update of the quasi-analytical algorithm (QAA_v5). Software Report. (International Ocean Color Group.) Available at http://www.ioccg.org/groups/Software_OCA/QAA_v5.pdf [Verified 27 March 2019].

Li, L., Li, L., Song, K., Li, Y., Tedesco, L. P., Shi, K., and Li, Z. (2013). An inversion model for deriving inherent optical properties of inland waters: establishment, validation and application. Remote Sensing of Environment 135, 150–166.
An inversion model for deriving inherent optical properties of inland waters: establishment, validation and application.Crossref | GoogleScholarGoogle Scholar |

Li, L., Li, L., and Song, K. (2015). Remote sensing of freshwater cyanobacteria: an extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sensing of Environment 157, 9–23.
Remote sensing of freshwater cyanobacteria: an extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin.Crossref | GoogleScholarGoogle Scholar |

Lin, S., Qi, J., Jones, J. R., and Stevenson, R. J. (2018). Effects of sediments and coloured dissolved organic matter on remote sensing of chlorophyll-a using Landsat TM/ETM+ over turbid waters. International Journal of Remote Sensing 39, 1421–1440.
Effects of sediments and coloured dissolved organic matter on remote sensing of chlorophyll-a using Landsat TM/ETM+ over turbid waters.Crossref | GoogleScholarGoogle Scholar |

Lyck, S. (2004). Simultaneous changes in cell quotas of microcystin, chlorophyll-a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. Journal of Plankton Research 26, 727–736.
Simultaneous changes in cell quotas of microcystin, chlorophyll-a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar |

Main-Knorn, M., Pflug, B., Debaecker, V., and Louis, J. (2015). Calibration and validation plan for the l2a processor and products of the Sentinel-2 mission. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7, 1249–1255.
Calibration and validation plan for the l2a processor and products of the Sentinel-2 mission.Crossref | GoogleScholarGoogle Scholar |

Martins, V. S., Barbosa, C. C. F., de Carvalho, L. A. S., Jorge, D. S. F., Lobo, F. de L., and Novo, E. M. L. de M. (2017). Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes. Remote Sensing 9, 322.
Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon floodplain lakes.Crossref | GoogleScholarGoogle Scholar |

Matthews, M. W. (2011). A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing 32, 6855–6899.
A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters.Crossref | GoogleScholarGoogle Scholar |

Matthews, M. W., Bernard, S., and Robertson, L. (2012). An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sensing of Environment 124, 637–652.
An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters.Crossref | GoogleScholarGoogle Scholar |

Mishra, S., Mishra, D. R., Lee, Z., and Tucker, C. S. (2013). Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: a quasi-analytical approach. Remote Sensing of Environment 133, 141–151.
Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: a quasi-analytical approach.Crossref | GoogleScholarGoogle Scholar |

Mishra, S., Mishra, D. R., and Lee, Z. (2014). Bio-optical inversion in highly turbid and cyanobacteria-dominated waters. IEEE Transactions on Geoscience and Remote Sensing 52, 375–388.
Bio-optical inversion in highly turbid and cyanobacteria-dominated waters.Crossref | GoogleScholarGoogle Scholar |

Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics 38, 7442–7455.
Estimation of the remote-sensing reflectance from above-surface measurements.Crossref | GoogleScholarGoogle Scholar | 18324298PubMed |

Ogashawara, I. (2015). Terminology and classification of bio-optical algorithms. Remote Sensing Letters 6, 613–617.
Terminology and classification of bio-optical algorithms.Crossref | GoogleScholarGoogle Scholar |

Ogashawara, I., Mishra, D., Mishra, S., Curtarelli, M., and Stech, J. (2013). A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sensing 5, 4774–4798.
A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters.Crossref | GoogleScholarGoogle Scholar |

Olmanson, L. G., Brezonik, P. L., and Bauer, M. E. (2011). Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resources Research 47, W09515.
Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W. (1988). Nuisance phytoplankton blooms in coastal, estuarine, and inland waters1. Limnology and Oceanography 33, 823–843.

Paerl, H. W., and Paul, V. J. (2012). Climate change: links to global expansion of harmful cyanobacteria. Water Research 46, 1349–1363.
Climate change: links to global expansion of harmful cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 21893330PubMed |

Paerl, H. W., Hall, N. S., and Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. The Science of the Total Environment 409, 1739–1745.
Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.Crossref | GoogleScholarGoogle Scholar | 21345482PubMed |

Ritchie, R. J. (2008). Universal chlorophyll equations for estimating chlorophylls-a, -b, -c, and -d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46, 115–126.
Universal chlorophyll equations for estimating chlorophylls-a, -b, -c, and -d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents.Crossref | GoogleScholarGoogle Scholar |

Sauer, M. J., Roesler, C. S., Werdell, P. J., and Barnard, A. (2012). Under the hood of satellite empirical chlorophyll-a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties. Optics Express 20, 20920–20933.
Under the hood of satellite empirical chlorophyll-a algorithms: revealing the dependencies of maximum band ratio algorithms on inherent optical properties.Crossref | GoogleScholarGoogle Scholar | 23037216PubMed |

Shi, K., Zhang, Y., Xu, H., Zhu, G., Qin, B., Huang, C., Liu, X., Zhou, Y., and Lv, H. (2015). Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environmental Science & Technology 49, 6448–6456.
Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods.Crossref | GoogleScholarGoogle Scholar |

Simis, S. G. H., Ruiz-Verdú, A., Domínguez-Gómez, J. A., Peña-Martinez, R., Peters, S. W. M., and Gons, H. J. (2007). Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass. Remote Sensing of Environment 106, 414–427.
Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass.Crossref | GoogleScholarGoogle Scholar |

Stumpf, R. P., Davis, T. W., Wynne, T. T., Graham, J. L., Loftin, K. A., Johengen, T. H., Gossiaux, D., Palladino, D., and Burtner, A. (2016). Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160–173.
Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 28073474PubMed |

Tebbs, E. J., Remedios, J. J., and Harper, D. M. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment 135, 92–106.
Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+.Crossref | GoogleScholarGoogle Scholar |

Terrence, S., Siddiq, K., John, Y., Ann, F. M., Kelley, M., Don, H., Richard, E., and Elizabeth, Z. (2018). A preliminary assessment of hyperspectral remote sensing technology for mapping submerged aquatic vegetation in the Upper Delaware River National Parks (USA). Advances in Remote Sensing 7, 290–312.
A preliminary assessment of hyperspectral remote sensing technology for mapping submerged aquatic vegetation in the Upper Delaware River National Parks (USA).Crossref | GoogleScholarGoogle Scholar |

Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B., and Nõges, T. (2016). First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sensing 8, 640.
First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery.Crossref | GoogleScholarGoogle Scholar |

Vanhellemont, Q., and Ruddick, K. (2016). Acolite for Sentinel-2: aquatic applications of MSI imagery. In ‘Proceedings of the ESA Living Planet Symposium’, 9–13 May 2016, Prague, Czech Republic. (Ed. L. Ouwehand.) Special Publication SP-740. (European Space Agency.)

Vincent, R. K., Qin, X., McKay, R. M. L., Miner, J., Czajkowski, K., Savino, J., and Bridgeman, T. (2004). Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sensing of Environment 89, 381–392.
Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie.Crossref | GoogleScholarGoogle Scholar |

Wang, M., Knobelspiesse, K. D., and McClain, C. R. (2005). Study of the Sea‐Viewing Wide Field‐of‐View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products. Journal of Geophysical Research – D. Atmospheres 110, D10S06.
Study of the Sea‐Viewing Wide Field‐of‐View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products.Crossref | GoogleScholarGoogle Scholar |

Watanabe, F., Mishra, D. R., Astuti, I., Rodrigues, T., Alcântara, E., Imai, N. N., and Barbosa, C. (2016). Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS Journal of Photogrammetry and Remote Sensing 121, 28–47.
Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters.Crossref | GoogleScholarGoogle Scholar |

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., and Dyble, J. (2010). Characterizing a cyanobacterial bloom in Western Lake Erie using satellite imagery and meteorological data. Limnology and Oceanography 55, 2025–2036.
Characterizing a cyanobacterial bloom in Western Lake Erie using satellite imagery and meteorological data.Crossref | GoogleScholarGoogle Scholar |