Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Assessing coastal aquifer vulnerability to seawater intrusion: adaptation of the DCG method and application to the Dradère–Souière coastal aquifer in northern Morocco

Fouad Bekkour https://orcid.org/0009-0002-5567-737X A * , Mina Amharref A , Hind Es Saouini A , Siham Acharki B and Abdes Samed Bernoussi A
+ Author Affiliations
- Author Affiliations

A Geoinformation, Land Management and Environment Research Team (GATE), Abdelmalek Essaâdi University, Faculty of Sciences and Technology, Tangier, Morocco.

B Centre for Remote Sensing Applications (CRSA), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.

* Correspondence to: fouad.bekkour@etu.uae.ac.ma

Handling Editor: Max Finlayson

Marine and Freshwater Research 75, MF24057 https://doi.org/10.1071/MF24057
Submitted: 4 April 2024  Accepted: 24 October 2024  Published: 13 November 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

Seawater intrusion into coastal aquifers represents a major global environmental challenge, leading to salinisation of these water resources.

Aims

This study aims to protect coastal aquifers from marine salinisation by assessing their vulnerability to seawater intrusion.

Methods

The DCG method was adapted by considering the weighted sum of the following three critical parameters controlling seawater intrusion: distance from saltwater (D), aquifer hydraulic conductivity (C) and the hydraulic gradient (G). Thereby, the weights assigned to these parameters were objectively determined through sensitivity tests.

Key results

The DCG map of the Dradère–Souière coastal aquifer shows that vulnerability increases near the sea, with a high to extreme vulnerability zone extending parallel to the coastline up to 5000 m inland. These findings are corroborated by a correlation analysis with the electrical conductivity map.

Conclusion

This study highlighted the adaptation of the DCG method for assessing the vulnerability of coastal aquifers to seawater intrusion and its successful application to the Dradère–Souière coastal aquifer.

Implications

The DCG method could be extended to other coastal regions as a strategic tool for protecting against seawater intrusion. Further improvements could be achieved by correlating it with other approaches and integrating it with GIS technologies.

Keywords: aquifer hydraulic conductivity, coastal aquifers, DCG method, Dradère–Souière coastal aquifer, GIS, hydraulic gradient, Merja Zerka lagoon, seawater intrusion, sensitivity tests, vulnerability.

References

Agency of the Hydraulic Basin of the Sebou (2006) Mission I. Assessment of groundwater resources on the Dradère–Souière plain. Internal report, ABHS, Fez, Morocco.

Agency of the Hydraulic Basin of the Sebou (2013) Study for the implementation of a groundwater contract for a participative and sustainable management of the groundwater resources of the Dradère–Souière aquifer system. Internal report, ABHS, Fez, Morocco.

Albinet M, Margat J (1970) Cartographie de la vulnerabilitè à la pollution des nappes d’eau souterraine. Bulletin du Bureau de Researches Géologiques et Minières – Section II. Géologie appliquée 3(4), 13-22 [In French].
| Google Scholar |

Aller L, Thornhill J (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic setting. Report EPA/600/2-87/035, Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Washington, DC, USA.

Amharref M, Aassine S, Bernoussi AS, Haddouchi BY (2007) Cartographie de la vulnérabilité à la pollution des eaux souterraines: application à la plaine du Gharb (Maroc). Revue des Sciences de l’Eau 20(2), 185-199 [In French].
| Crossref | Google Scholar |

Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles MJ, Zwahlen F (2006) Karst groundwater protection: first application of a Pan-European approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (southern Spain). Science of The Total Environment 357(1–3), 54-73.
| Crossref | Google Scholar | PubMed |

Arjdal Y, Kili M, Taia S, Mridekh A, Acharki S, El Kanti SM, El Mansouri B (2024) Seawater intrusion assessment in the Bir Guendouz–Boulanoire coastal transboundary aquifers of Morocco and Mauritania. Groundwater for Sustainable Development 25, 101125.
| Crossref | Google Scholar |

Batchi M, Al Karkouri J, El Maaqili M, Fenijiro I (2014) Cartographie de la vulnérabilité à l’intrusion marine de l’aquifère côtier de Mnasra (littoral du Gharb, Maroc–Nord-Occidental). Marine Science & Coastal Research 11, 54-69 [In French].
| Google Scholar |

Bear J, Cheng AH-D, Sorek S, Ouazar D, Herrera I (1999) ‘Seawater intrusion in coastal aquifers: concepts, methods and practices.’ (Springer Science & Business Media)

Bekkour F, Amharref M, Essaouini H, Bernoussi AS (2024) Assessing coastal aquifer vulnerability to seawater intrusion using the ‘GALDIT’ method: application to the Dradère–Souiere coastal aquifer (Northern Morocco). In ‘E3S Web of Conferences: 2nd International Congress on Coastal Research (ICCR 2023)’, 8–10 December 2023, Tangier, Morocco. (Eds S El Moussaoui, H El Talibi, K Aboumaria). Vol. 502, article 04009. (EDP Sciences) doi:10.1051/e3sconf/202450204009

Benoit J, Roberts S (2007) The national academies report on mitigating shore erosion along sheltered coasts. In ‘Coastal Sediments’ 07: Proceedings of the Sixth International Symposium on Coastal Engineering and Science of Coastal Sediment Process’, 13–17 May 2007, New Orleans, LA, USA, pp. 1601–1608. (American Society of Civil Engineers: Reston, VA, USA) doi:10.1061/40926(239)124

Bouchnan R (2015) Vulnérabilité des aquifères fractures: méthode F-DRASTIC et aspect dynamique applications aux aquifères d’Angad et de Bou-Areg (Maroc). PhD thesis, University of Abdelmalek Essaâdi, Faculty of Science and Technology, Tangier, Morocco. [In French]

Bouchnan R, Amharref M, Bernoussi AS (2014) Dynamic vulnerability: application to the Bou-Areg Aquifer (Morocco). IOSR Journal of Environmental Science, Toxicology and Food Technology 8(12), 72-79.
| Crossref | Google Scholar |

Chachadi AG, Lobo-Ferreira JP (2001) Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Coastin 4, 7-9.
| Google Scholar |

Cheng AH-D (2020) Groundwater: saltwater intrusion. In ‘Managing water resources and hydrological systems’. (Eds BD Fath, SE Jorgensen) pp. 133–150. (CRC Press)

Chossat J-C (2005) ‘La mesure de la conductivité hydraulique dans les sols: choix des méthodes.’ (Tec & Doc: Paris, France) [In French]

Civita M (1994) ‘Le Carte della vulnerabilità degli acquiferi all’inquinamento: teoria e pratica – studi sulla vulnerabilità degli acquiferi 7.’ (Pitagora Editrice Bologna: Bologna, Italy) [In Italian]

Combe M (1975) Le bassin Rharb-Mamora et les petits bassins septentrionaux des oueds Dradère et Soueire. Ressources en Eaux du Maroc 2, 93-128 [In French].
| Google Scholar |

Dekkaki HC, Ali MB, Taleb AA, Myzy H, Zerrouk MH, Mesmoudi A (2018) Evaluation of intrinsic vulnerability against seawater intrusion using the GALDIT approach. Application to the R’mel aquifer (north west of Morocco). Journal of Materials and Environmental Sciences 9(1), 107-112.
| Crossref | Google Scholar |

Dörfliger N (2013) Entre terre et mer, les eaux souterraines du littoral. Géosciences 17, 74-81 Available at https://brgm.hal.science/hal-01062271v1 [In French].
| Google Scholar |

Ducommun R (2010) Estimation et cartographie de la vulnérabilité des eaux souterraines en milieu urbain. PhD thesis, Université de Neuchâte, Neuchâtel, Switzerland. [In French]

El Mokhtar M, Chibout M, Kili M, El Mansouri B, Chao J, El Kanti SM, Ntarmouchant A, Benslimane A (2018) Évaluation de l’intrusion saline dans la nappe de Foum El Oued, province de Laâyoune, Maroc. Bulletin de l’Institut Scientifique, Rabat, Section Sciences de la Terre 40, 53-69 [In French].
| Google Scholar |

Es Saouini H, Amharref M, Bernoussi AS (2014) Vulnerability of the groundwater pollution: static or dynamic? Application of R’Mel’s Aquifer (Morocco). International Journal of Innovation and Applied Studies 6(4), 929-940.
| Google Scholar |

Fadili A (2014) Etude hydrogéologique et géophysique de l’extension de l’intrusion marine dans le Sahel de l’Oualidia (Maroc): analyse statistique, hydrochimie et prospection électrique. PhD thesis, Univérsité de Chouaïb Doukkali, Faculté Des Sciences, El Jadida, Morocco. [In French]

Ghyben W B (1889) Nota in verband met de voorgenomen putboring nabij Amsterdam. Koninklijk Instituut van Ingenieurs Tijdschrift 8, 8-22 [In Dutch].
| Google Scholar |

Gogu RC, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques. application to the Néblon River basin (Belgium). Environmental Geology 44(8), 881-892.
| Crossref | Google Scholar |

Haslett S (2008) ‘Coastal systems.’ (Routledge)

Herzberg A (1901) Die wasserversorgung einiger Nordseebader. Journal für Gasbeleuchtung und Wasserversorgung 44, 815-819 [In German].
| Google Scholar |

Kazakis N, Busico G, Colombani N, Mastrocicco M, Pavlou A, Voudouris K (2019) GALDIT-SUSI a modified method to account for surface water bodies in the assessment of aquifer vulnerability to seawater intrusion. Journal of Environmental Management 235, 257-265.
| Crossref | Google Scholar | PubMed |

Lobo-Ferreira JP, Cabral M (1991) Proposal for an operational definition of vulnerability for the European Community’s Atlas of Groundwater Resources. In ‘Meeting of the European Institute for Water’. (Groundwater Work Group: Brussels, Belgium)

Loukkos Regional Agricultural Development Office (2023) Monthly weather bulletins from Météo–Mrissa Moulay bousselham Morocco. ORMVAL, Ksar El Kébir, Morocco.

Margat J (1968) Vulnérabilité des nappes d’eau souterraine à la pollution. Rapport 68 SGL 198 HYD, BRGM, Orléans, France. [In French]

Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (Eds) (2021) Summary for policymakers. In ‘Climate change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change’. pp. 3−32. (Cambridge University Press: Cambridge, UK, and New York, NY, USA) doi:10.1017/9781009157896.001

Najib S, Fadili A, Mehdi K, Riss J, Makan A (2017) Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. Journal of Contaminant Hydrology 198, 24-36.
| Crossref | Google Scholar | PubMed |

Petelet-Giraud E, Dörfliger N, Crochet P (2000) RISKE: méthode d’évaluation multicritère de la cartographie de la vulnérabilité des aquifères karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéologie 4, 71-88 [In French].
| Google Scholar |

Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeology Journal 17(3), 725-733.
| Crossref | Google Scholar |

Reese RS, Cunningham KJ (2000) Hydrogeology of the gray limestone aquifer in southern Florida. Water-Resources Investigations Report 99-4213, US Geological Survey, Reston, VA, USA. doi:10.3133/wri994213

Shukla PR, Skeg J, Buendia EC, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Pereira JP, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (Eds) (2019) ‘Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.’ (Cambridge University Press: Cambridge, UK, and New York, NY, USA) doi:10.1017/9781009157988

Steyl G, Dennis I (2010) Review of coastal-area aquifers in Africa. Hydrogeology Journal 18(1), 217-225.
| Crossref | Google Scholar |

Vrba J, Zaporozec A (1994) ‘Guidebook on mapping groundwater vulnerability.’ (Heise: Hannover, Germany)

Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in Water Resources 51, 3-26.
| Crossref | Google Scholar |