Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Socio-ecological impacts of industrial aquaculture and ways forward to sustainability

Almudena Cánovas-Molina https://orcid.org/0000-0002-3599-7109 A B and Eduardo García-Frapolli A
+ Author Affiliations
- Author Affiliations

A Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, 58190 Morelia, México.

B Corresponding author. Email: almucanovass@gmail.com

Marine and Freshwater Research 72(8) 1101-1109 https://doi.org/10.1071/MF20265
Submitted: 2 September 2020  Accepted: 27 January 2021   Published: 23 February 2021

Abstract

In recent decades, we have witnessed a rapid increase in world aquaculture production, the so-called ‘blue revolution’. So as to provide a holistic overview of the socio-ecological threats coupled with this increase, a literature review has been conducted. The following seven major socio-ecological impacts were identified: (i) the damage and destruction of natural environments, (ii) discharges; (iii) a risk to wild fish and shellfish populations, (iv) spatial conflicts, (v) threats to food security, (vi) unfairness in the access to commons; and (vii) the unequal distribution of benefits. So as to move forward from ‘blue revolution’ to a ‘blue evolution’ and attain sustainable aquaculture, the following tools have been identified as instrumental for the transition process: technical, management, governance and legal aspects.

Keywords: sustainable development, blue revolution, environmental impacts, social justice, fish farming.


References

Adarme-Vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., and Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories 11, 96.
Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production.Crossref | GoogleScholarGoogle Scholar | 22830315PubMed |

Adduci, M. (2009). Neoliberal wave rocks Chilika Lake, India: conflict over intensive aquaculture from a class perspective. Journal of Agrarian Change 9, 484–511.
Neoliberal wave rocks Chilika Lake, India: conflict over intensive aquaculture from a class perspective.Crossref | GoogleScholarGoogle Scholar |

Adger, W. N., and Luttrell, C. (2000). Property rights and the utilisation of wetlands. Ecological Economics 35, 75–89.
Property rights and the utilisation of wetlands.Crossref | GoogleScholarGoogle Scholar |

Ahmad, I., Rani, A. M. B., Verma, A. K., and Maqsood, M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International 25, 1215–1226.
Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition.Crossref | GoogleScholarGoogle Scholar |

Ahmed, N., and Troell, M. (2010). Fishing for prawn larvae in Bangladesh: an important coastal livelihood causing negative effects on the environment. Ambio 39, 20–29.
Fishing for prawn larvae in Bangladesh: an important coastal livelihood causing negative effects on the environment.Crossref | GoogleScholarGoogle Scholar | 20496649PubMed |

Alonso-Rodríguez, R., and Páez-Osuna, F. (2003). Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture 219, 317–336.
Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California.Crossref | GoogleScholarGoogle Scholar |

Ashton, E. C. (2008). The impact of shrimp farming on mangrove ecosystems. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3, 003.
The impact of shrimp farming on mangrove ecosystems.Crossref | GoogleScholarGoogle Scholar |

Béné, C. (2005). The good, the bad and the ugly: discourse, policy controversies and the role of science in the politics of shrimp farming development. Development Policy Review 23, 585–614.
The good, the bad and the ugly: discourse, policy controversies and the role of science in the politics of shrimp farming development.Crossref | GoogleScholarGoogle Scholar |

Béné, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G. I., and Williams, M. (2015). Feeding 9 billion by 2050 – putting fish back on the menu. Food Security 7, 261–274.
Feeding 9 billion by 2050 – putting fish back on the menu.Crossref | GoogleScholarGoogle Scholar |

Biao, X. (2008). The development of and prospects for organic aquaculture worldwide. Outlook on Agriculture 37, 255–260.
The development of and prospects for organic aquaculture worldwide.Crossref | GoogleScholarGoogle Scholar |

Bjørn, P. A., and Finstad, B. (2002). Salmon lice, Lepeophtheirus salmonis (Krøyer), infestation in sympatric populations of Arctic char, Salvelinus alpinus (L.), and sea trout, Salmo trutta (L.), in areas near and distant from salmon farms. ICES Journal of Marine Science 59, 131–139.
Salmon lice, Lepeophtheirus salmonis (Krøyer), infestation in sympatric populations of Arctic char, Salvelinus alpinus (L.), and sea trout, Salmo trutta (L.), in areas near and distant from salmon farms.Crossref | GoogleScholarGoogle Scholar |

Black, K. D. (2001). ‘Environmental Impacts of Aquaculture.’ (Sheffield Academic Press: Sheffield, UK.)

Bogadóttir, R. (2020). Blue growth and its discontents in the Faroe Islands: an island perspective on blue (de)growth, sustainability, and environmental justice. Sustainability Science 15, 103–115.
Blue growth and its discontents in the Faroe Islands: an island perspective on blue (de)growth, sustainability, and environmental justice.Crossref | GoogleScholarGoogle Scholar |

Bossier, P., and Ekasari, J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotechnology 10, 1012–1016.
Biofloc technology application in aquaculture to support sustainable development goals.Crossref | GoogleScholarGoogle Scholar | 28941177PubMed |

Bottoni, P., Caroli, S., and Caracciolo, A. B. (2010). Pharmaceuticals as priority water contaminants. Toxicological and Environmental Chemistry 92, 549–565.
Pharmaceuticals as priority water contaminants.Crossref | GoogleScholarGoogle Scholar |

Brand, U. (2012). Green economy – the next oxymoron? No lessons learned from failures of implementing sustainable development. Gaia 21, 28–32.
Green economy – the next oxymoron? No lessons learned from failures of implementing sustainable development.Crossref | GoogleScholarGoogle Scholar |

Buschmann, A. H., and Fortt, A. (2005). Efectos ambientales de la acuicultura intensiva y alternativas para un desarrollo sustentable. Ambiente y Desarrollo 21, 58–64.

Cardoso-Mohedano, J. G., Lima-Rego, J., Sanchez-Cabeza, J. A., Ruiz-Fernández, A. C., Canales-Delgadillo, J., Sánchez-Flores, E. I., and Páez-Osuna, F. (2018). Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents. Estuarine, Coastal and Shelf Science 203, 72–79.
Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents.Crossref | GoogleScholarGoogle Scholar |

Chang, B. D., Coombs, K. A., and Page, F. H. (2014). The development of the Salmon aquaculture industry in southwestern New Brunswick, Bay of Fundy, including steps toward integrated coastal zone management. Aquaculture Economics & Management 18, 1–27.
The development of the Salmon aquaculture industry in southwestern New Brunswick, Bay of Fundy, including steps toward integrated coastal zone management.Crossref | GoogleScholarGoogle Scholar |

Chen, S. L., Coffin, D. E., and Malone, R. F. (1997). Sludge production and management for recirculating aquacultural systems. Journal of the World Aquaculture Society 28, 303–315.
Sludge production and management for recirculating aquacultural systems.Crossref | GoogleScholarGoogle Scholar |

Cho, C. Y., and Bureau, D. P. (2001). A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquaculture Research 32, 349–360.
A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture.Crossref | GoogleScholarGoogle Scholar |

Clavelle, T., Lester, S. E., Gentry, R., and Froehlich, H. E. (2019). Interactions and management for the future of marine aquaculture and capture fisheries. Fish and Fisheries 20, 368–388.
Interactions and management for the future of marine aquaculture and capture fisheries.Crossref | GoogleScholarGoogle Scholar |

Cohen, J. E. (2003). Human population: the next half century. Science 302, 1172–1175.
Human population: the next half century.Crossref | GoogleScholarGoogle Scholar | 14615528PubMed |

Costa-Pierce, B. A. (2002). The ‘blue revolution’: aquaculture must go green. Journal of the World Aquaculture Society 33, 4–5.

Crab, R., Defoirdt, T., Bossier, P., and Verstraete, W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture 356–357, 351–356.
Biofloc technology in aquaculture: Beneficial effects and future challenges.Crossref | GoogleScholarGoogle Scholar |

Cretu, M., Dediu, L., Cristea, V., Zugravu, A., Turek Rahoveanu, M. M., Bandi, A. C., Turek Rahoveanu, A., and Mocuta, D. N. (2016). Environmental impact of aquaculture: a literature review. In ‘Proceedings of the 27th International Business Information Management Association (IBIMA)’. 4–5 May 2016, Milan, Italy. pp. 3379–3387. (IBIMA Publishing.)

Das, P., Das, A., and Roy, S. (2016). Shrimp fry (meen) farmers of Sundarban mangrove forest (India): a tale of ecological damage and economic hardship. International Journal of Agricultural and Food Research 5, 28–41.

Dawood, M. A. O., Koshio, S., Abdel-Daim, M. M., and Van Doan, H. (2019). Probiotic application for sustainable aquaculture. Reviews in Aquaculture 11, 907–924.
Probiotic application for sustainable aquaculture.Crossref | GoogleScholarGoogle Scholar |

De Silva, S. S., Nguyen, T. T. T., Turchini, G. M., Amarasinghe, U. S., and Abery, N. W. (2009). Alien species in aquaculture and biodiversity: a paradox in food production. Ambio 38, 24–28.
Alien species in aquaculture and biodiversity: a paradox in food production.Crossref | GoogleScholarGoogle Scholar | 19260343PubMed |

Deb, A. K. (1998). Fake blue revolution: environmental and socio-economic impacts of shrimp culture in the coastal areas of Bangladesh. Ocean and Coastal Management 41, 63–88.
Fake blue revolution: environmental and socio-economic impacts of shrimp culture in the coastal areas of Bangladesh.Crossref | GoogleScholarGoogle Scholar |

Dung, L. C., Hoanh, C. T., Le Page, C., Bousquet, F., and Gajaseni, N. (2009). Facilitating dialogue between aquaculture and agriculture: lessons from role-playing games with farmers in the Mekong Delta, Vietnam. Water Policy 11, 80–93.
Facilitating dialogue between aquaculture and agriculture: lessons from role-playing games with farmers in the Mekong Delta, Vietnam.Crossref | GoogleScholarGoogle Scholar |

Edwards, P. (2000). Aquaculture, poverty impacts and livelihoods. Natural Resource Perspectives 56, 1–3.

Ekasari, J., Rivandi, D. R., Firdausi, A. P., Surawidjaja, E. H., Zairin, M., Bossier, P., and De Schryver, P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture 441, 72–77.
Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance.Crossref | GoogleScholarGoogle Scholar |

Engle, C. R., and Bohorquez, J. J. (2019). Mariculture, economic and social impacts. In ‘Encyclopedia of Ocean Sciences’. (Ed J. H. Steele.) pp. 422–430. (Academic Press.)10.1016/B978-0-12-409548-9.11400-9

Ertör, I., and Ortega-Cerdà, M. (2015). Political lessons from early warnings: marine finfish aquaculture conflicts in Europe. Marine Policy 51, 202–210.
Political lessons from early warnings: marine finfish aquaculture conflicts in Europe.Crossref | GoogleScholarGoogle Scholar |

Filipski, M., and Belton, B. (2018). Give a man a fishpond: modeling the impacts of aquaculture in the rural economy. World Development 110, 205–223.
Give a man a fishpond: modeling the impacts of aquaculture in the rural economy.Crossref | GoogleScholarGoogle Scholar |

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., and West, P. C. (2011). Solutions for a cultivated planet. Nature 478, 337.
Solutions for a cultivated planet.Crossref | GoogleScholarGoogle Scholar | 21993620PubMed |

Food and Agriculture Organization of the United Nations (2020). ‘The State of World Fisheries and Aquaculture 2020: Sustainability in Action.’ (FAO: Rome, Italy.)10.4060/CA9229EN

Gallopín, G. (2003). ‘Sostenibilidad y Desarrollo Sostenible: un Enfoque Sistémico.’ (Naciones Unidas: Santiago de Chile.)

Galparsoro, I., Murillas, A., Pinarbasi, K., Sequeira, A. M. M., Stelzenmüller, V., Borja, A., O’Hagan, A. M., Boyd, A., Bricker, S., Garmendia, J. M., Gimpel, A., Gangnery, A., Billing, S. L., Bergh, Ø., Strand, Ø., Hiu, L., Fragoso, B., Icely, J., Ren, J., Papageorgiou, N., Grant, J., Brigolin, D., Pastres, R., and Tett, P. (2020). Global stakeholder vision for ecosystem-based marine aquaculture expansion from coastal to offshore areas. Reviews in Aquaculture 12, 2061–2079.
Global stakeholder vision for ecosystem-based marine aquaculture expansion from coastal to offshore areas.Crossref | GoogleScholarGoogle Scholar |

Gichana, Z. M., Liti, D., Waidbacher, H., Zollitsch, W., Drexler, S., and Waikibia, J. (2018). Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquaculture International 26, 1541–1572.
Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation.Crossref | GoogleScholarGoogle Scholar |

Gowdy, J., and Baveye, P. (2019). An evolutionary perspective on industrial and sustainable agriculture. In ‘Agroecosystem Diversity Reconciling Contemporary Agriculture and Environmental Quality’. (Ed. G. Lemaire.) pp. 425–433. (Academic Press.)10.1016/B978-0-12-811050-8.00027-3

Hadjimichael, M., Bruggeman, A., and Lange, M. A. (2014). Tragedy of the few? A political ecology perspective of the right to the sea: the Cyprus marine aquaculture sector. Marine Policy 49, 12–19.
Tragedy of the few? A political ecology perspective of the right to the sea: the Cyprus marine aquaculture sector.Crossref | GoogleScholarGoogle Scholar |

Hanes, S. P. (2018). Aquaculture and the post productive transition on the Maine coast. Geographical Review 108, 185–202.
Aquaculture and the post productive transition on the Maine coast.Crossref | GoogleScholarGoogle Scholar |

Heuch, P. A., and Mo, T. A. (2001). A model of salmon louse production in Norway: effects of increasing salmon production and public management measures. Diseases of Aquatic Organisms 45, 145–152.
A model of salmon louse production in Norway: effects of increasing salmon production and public management measures.Crossref | GoogleScholarGoogle Scholar | 11463102PubMed |

HLPE (2014). Sustainable fisheries and aquaculture for food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome, Italy.

Holmer, M., Pérez, M., and Duarte, C. M. (2003). Benthic primary producers: a neglected environmental problem in Mediterranean maricultures? Marine Pollution Bulletin 46, 1372–1376.
Benthic primary producers: a neglected environmental problem in Mediterranean maricultures?Crossref | GoogleScholarGoogle Scholar | 14607535PubMed |

Hue, L. T. V. (2006). Gender, Doi Moi and mangrove management in northern Vietnam. Gender, Technology and Development 10, 37–59.
Gender, Doi Moi and mangrove management in northern Vietnam.Crossref | GoogleScholarGoogle Scholar |

Huong, T. T. T., and Berkes, F. (2011). Diversity of resource use and property rights in Tam Giang Lagoon, Vietnam. The International Journal of the Commons 5, 130–149.
Diversity of resource use and property rights in Tam Giang Lagoon, Vietnam.Crossref | GoogleScholarGoogle Scholar |

Islam, M. S. (2005). Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Marine Pollution Bulletin 50, 48–61.
Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development.Crossref | GoogleScholarGoogle Scholar | 15664033PubMed |

Israel, D. C. (2007). Assessing the severity of problems of aquaculture in Laguna de Bay: practitioners’ perspectives. Policy Notes 2007-04. (Philippine Institute for Development Studies.) Available at https://www.pids.gov.ph/publications/4198 [Verified 17 February 2021].

Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., and Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637.
Historical overfishing and the recent collapse of coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Jana, B. B., and Jana, S. (2003). The potential and sustainability of aquaculture in India. Journal of Applied Aquaculture 13, 283–316.
The potential and sustainability of aquaculture in India.Crossref | GoogleScholarGoogle Scholar |

Johnston, P., Everard, M., Santillo, D., and Robèrt, K. H. (2007). Reclaiming the definition of sustainability. Environmental Science and Pollution Research International 14, 60–66.
Reclaiming the definition of sustainability.Crossref | GoogleScholarGoogle Scholar | 17352129PubMed |

Karakassis, I., Tsapakis, M., Hatziyanni, E., Papadopoulou, K. N., and Plaiti, W. (2000). Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES Journal of Marine Science 57, 1462–1471.
Impact of cage farming of fish on the seabed in three Mediterranean coastal areas.Crossref | GoogleScholarGoogle Scholar |

Kawarazuka, N., and Béné, C. (2010). Linking small-scale fisheries and aquaculture to household nutritional security: an overview. Food Security 2, 343–357.
Linking small-scale fisheries and aquaculture to household nutritional security: an overview.Crossref | GoogleScholarGoogle Scholar |

Kozhikkodan Veettil, B. K., and Quang, N. X. (2019). Mangrove forests of Cambodia: recent changes and future threats. Ocean and Coastal Management 181, 104895.
Mangrove forests of Cambodia: recent changes and future threats.Crossref | GoogleScholarGoogle Scholar |

Kurtoglu, I. Z., Kucuk, H., Alkan, A., and Özdemir, A. (2010). Economic analysis and sustainability of Turkish marine hatcheries. Turkish Journal of Fisheries and Aquatic Sciences 10, 513–521.
Economic analysis and sustainability of Turkish marine hatcheries.Crossref | GoogleScholarGoogle Scholar |

Lester, S. E., Stevens, J. M., Gentry, R. R., Kappel, C. V., Bell, T. W., Costello, C. J., Gaines, S. D., Kiefer, D. A., Maue, C. C., Rensel, J. E., Simons, R. D., Washburn, L., and White, C. (2018). Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nature 9, 945.
Marine spatial planning makes room for offshore aquaculture in crowded coastal waters.Crossref | GoogleScholarGoogle Scholar |

Li, C., Lee, C. T., Gao, Y., Hashim, H., Zhang, X., Wu, W. M., and Zhang, Z. (2018). Prospect of aquaponics for the sustainable development of food production in urban. Chemical Engineering Transactions 63, 475–480.
Prospect of aquaponics for the sustainable development of food production in urban.Crossref | GoogleScholarGoogle Scholar |

Liu, Y., Olaussen, J. O., and Skonhoft, A. (2011). Wild and farmed salmon in Norway: a review. Marine Policy 35, 413–418.
Wild and farmed salmon in Norway: a review.Crossref | GoogleScholarGoogle Scholar |

Liu, L., Hu, Z., Dai, X., and Avnimelech, Y. (2014). Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system. Aquaculture 418–419, 79–86.
Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system.Crossref | GoogleScholarGoogle Scholar |

Liu, X., Steele, J. C., and Meng, X. Z. (2017). Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review. Environmental Pollution 223, 161–169.
Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review.Crossref | GoogleScholarGoogle Scholar | 28131482PubMed |

Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., and Bazzaz, F. A. (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10, 689–710.
Biotic invasions: causes, epidemiology, global consequences, and control.Crossref | GoogleScholarGoogle Scholar |

Martinez-Porchas, M., and Martinez-Cordova, L. R. (2012). World aquaculture: environmental impacts and troubleshooting alternatives. TheScientificWorldJournal 2012, 389623.
World aquaculture: environmental impacts and troubleshooting alternatives.Crossref | GoogleScholarGoogle Scholar | 22649317PubMed |

Mikkelsen, E. (2007). Aquaculture–fisheries interactions. Marine Resource Economics 22, 287–303.
Aquaculture–fisheries interactions.Crossref | GoogleScholarGoogle Scholar |

Naus, F. L., Schot, P., Groen, K., Ahmed, K. M., and Griffioen, J. (2019). Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use. Hydrology and Earth System Sciences 23, 1431–1451.
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use.Crossref | GoogleScholarGoogle Scholar |

Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., and Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature 405, 1017–1024.
Effect of aquaculture on world fish supplies.Crossref | GoogleScholarGoogle Scholar | 10890435PubMed |

Neori, A., Troell, M., Chopin, T., Yarish, C., Critchley, A., and Buschmann, A. H. (2007). The need for a balanced ecosystem approach to blue revolution aquaculture. Environment 49, 36–43.
The need for a balanced ecosystem approach to blue revolution aquaculture.Crossref | GoogleScholarGoogle Scholar |

Nickerson, D. J. (1999). Trade-offs of mangrove area development in the Philippines. Ecological Economics 28, 279–298.
Trade-offs of mangrove area development in the Philippines.Crossref | GoogleScholarGoogle Scholar |

Noakes, D. J., Fang, L., Hipel, K. W., and Kilgour, D. M. (2003). An examination of the salmon aquaculture conflict in British Columbia using the graph model for conflict resolution. Fisheries Management and Ecology 10, 123–137.
An examination of the salmon aquaculture conflict in British Columbia using the graph model for conflict resolution.Crossref | GoogleScholarGoogle Scholar |

Nobile, A. B., Cunico, A. M., Vitule, J. R. S., Queiroz, J., Vidotto-Magnoni, A. P., García, D. A. Z., Orsi, M. L., Lima, F. P., Acosta, A. A., da Silva, R. J., do Prado, F. D., Porto-Foresti, F., Brandao, H., Foresti, F., Oliveira, C., and Ramos, I. P. (2020). Status and recommendations for sustainable freshwater aquaculture in Brazil. Reviews in Aquaculture 12, 1495–1517.
Status and recommendations for sustainable freshwater aquaculture in Brazil.Crossref | GoogleScholarGoogle Scholar |

Nobre, A. M., Robertson-Andersson, D., Neori, A., and Sankar, K. (2010). Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds. Aquaculture 306, 116–126.
Ecological–economic assessment of aquaculture options: comparison between abalone monoculture and integrated multi-trophic aquaculture of abalone and seaweeds.Crossref | GoogleScholarGoogle Scholar |

Nyina-Wamwiza, L., Wathelet, B., Richir, J., Rollin, X., and Kestemont, P. (2010). Partial or total replacement of fish meal by local agricultural by-products in diets of juvenile African catfish (Clarias gariepinus): growth performance, feed efficiency and digestibility. Aquaculture Nutrition 16, 237–247.
Partial or total replacement of fish meal by local agricultural by-products in diets of juvenile African catfish (Clarias gariepinus): growth performance, feed efficiency and digestibility.Crossref | GoogleScholarGoogle Scholar |

Olsen, R. L., and Hasan, M. R. (2012). A limited supply of fishmeal: impact on future increases in global aquaculture production. Trends in Food Science & Technology 27, 120–128.
A limited supply of fishmeal: impact on future increases in global aquaculture production.Crossref | GoogleScholarGoogle Scholar |

Páez-Osuna, F. (2001). The environmental impact of shrimp aquaculture: a global perspective. Environmental Pollution 112, 229–231.
The environmental impact of shrimp aquaculture: a global perspective.Crossref | GoogleScholarGoogle Scholar | 11234540PubMed |

Patil, P. G., and Krishnan, M. (1998). The social impacts of shrimp farming in Nellore District, India. Aquaculture Asia 3, 3–5.

Pérez-Fuentes, J. A., Pérez-Rostro, C. I., and Hernández-Vergara, M. P. (2013). Pond-reared Malaysian prawn Macrobrachium rosenbergii with the biofloc system. Aquaculture 400–401, 105–110.
Pond-reared Malaysian prawn Macrobrachium rosenbergii with the biofloc system.Crossref | GoogleScholarGoogle Scholar |

Phong, L. T., Udo, H. M. J., Van Mensvoort, M. E. F., Bosma, R. H., Tri, L. Q., Nhan, D. K., and Van der Zijpp, A. J. (2008). Integrated agriculture–aquaculture systems in the Mekong Delta, Vietnam: an analysis of recent trends. Asian Journal of Agriculture and Development 4, 51–66.

Phyne, J. G. (1996). Balancing social equity and environmental integrity in Ireland’s salmon farming industry. Society & Natural Resources 9, 281–293.
Balancing social equity and environmental integrity in Ireland’s salmon farming industry.Crossref | GoogleScholarGoogle Scholar |

Polidoro, B. A., Carpenter, K. E., Collins, L., Duke, N. C., Ellison, A. M., Ellison, J. C., Farnsworth, E. J., Fernando, E. S., Kathiresan, K., Koedam, N. E., Livingstone, S. R., Miyagi, T., Moore, G. E., Nam, V. N., Ong, J. E., Primavera, J. H., Salmo, S. G., Sanciangco, J. C., Sukardjo, S., Wang, Y., and Yong, J. W. H. (2010). The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5, e10095.
The loss of species: mangrove extinction risk and geographic areas of global concern.Crossref | GoogleScholarGoogle Scholar | 20386710PubMed |

Primavera, J. H. (1997). Socio-economic impacts of shrimp culture. Aquaculture Research 28, 815–827.
Socio-economic impacts of shrimp culture.Crossref | GoogleScholarGoogle Scholar |

Primavera, J. H. (1998). Mangroves as nurseries: shrimp populations in mangrove and non-mangrove habitats. Estuarine, Coastal and Shelf Science 46, 457–464.
Mangroves as nurseries: shrimp populations in mangrove and non-mangrove habitats.Crossref | GoogleScholarGoogle Scholar |

Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean and Coastal Management 49, 531–545.
Overcoming the impacts of aquaculture on the coastal zone.Crossref | GoogleScholarGoogle Scholar |

Purvis, B., Mao, Y., and Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. Sustainability Science 14, 681–695.
Three pillars of sustainability: in search of conceptual origins.Crossref | GoogleScholarGoogle Scholar |

Quimpo, T. J. R., Ligson, C. A., Manogan, D. P., Requilme, J. N. C., Albelda, R. L., Conaco, C., and Cabaitan, P. C. (2020). Fish farm effluents alter reef benthic assemblages and reduce coral settlement. Marine Pollution Bulletin 153, 111025.
Fish farm effluents alter reef benthic assemblages and reduce coral settlement.Crossref | GoogleScholarGoogle Scholar |

Rajee, O., and Mun, A. T. K. (2017). Impact of aquaculture on the livelihoods and food security of rural communities. International Journal of Fisheries and Aquatic Studies 5, 278–283.

Ratchatapattanakul, N., Kazuya, W., Yuki, O., and Yasuyuki, K. (2017). Living under the state and storms: the history of blood cockle aquaculture in Bandon Bay, Thailand. Journal of Southeast Asian Studies 6, 3–30.

Rönnbäck, P., Bryceson, I., and Kautsky, N. (2002). Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies. Ambio 31, 537–542.
Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies.Crossref | GoogleScholarGoogle Scholar | 12572819PubMed |

Sampantamit, T., Ho, L., Lachat, C., Sutummawong, N., Sorgeloos, P., and Goethals, P. (2020). Aquaculture production and its environmental sustainability in Thailand: challenges and potential solutions. Sustainability 12, 2010.
Aquaculture production and its environmental sustainability in Thailand: challenges and potential solutions.Crossref | GoogleScholarGoogle Scholar |

Silvert, W. (1992). Assessing environmental impacts of finfish aquaculture in marine waters. Aquaculture 107, 67–79.
Assessing environmental impacts of finfish aquaculture in marine waters.Crossref | GoogleScholarGoogle Scholar |

Sindilariu, P. D. (2007). Reduction in effluent nutrient loads from flow-through facilities for trout production: a review. Aquaculture Research 38, 1005–1036.
Reduction in effluent nutrient loads from flow-through facilities for trout production: a review.Crossref | GoogleScholarGoogle Scholar |

Smith, M. D., Roheim, C. A., Crowder, L. B., Halpern, B. S., Turnipseed, M., Anderson, J. L., Asche, F., Bourillón, L., Guttormsen, A. G., Khan, A., Liguori, L. A., McNevin, A., O’Connor, M. I., Squires, D., Tyedmers, P., Brownstein, C., Carden, K., Klinger, D. H., Sagarin, R., and Selkoe, K. A. (2010). Sustainability and global seafood. Science 327, 784–786.
Sustainability and global seafood.Crossref | GoogleScholarGoogle Scholar | 20150469PubMed |

Sorokin, Y. I., Sorokin, P. Y., and Ravagnan, G. (2006). Hypereutrophication events in the Ca’Pisani lagoons associated with intensive aquaculture. Hydrobiologia 571, 1–15.
Hypereutrophication events in the Ca’Pisani lagoons associated with intensive aquaculture.Crossref | GoogleScholarGoogle Scholar |

Srinath, K. (2008). Gender and coastal zone biodiversity. Gender, Technology and Development 12, 209–227.
Gender and coastal zone biodiversity.Crossref | GoogleScholarGoogle Scholar |

Stead, S. M., Burnell, G., and Goulletquer, P. (2002). Aquaculture and its role in integrated coastal zone management. Aquaculture International 10, 447–468.
Aquaculture and its role in integrated coastal zone management.Crossref | GoogleScholarGoogle Scholar |

Tacon, A. G. J. (2004). Use of fish meal and fish oil in aquaculture: a global perspective. Aquatic Resources Culture and Development 1, 3–14.

Tanjung, D., and Hutagaol, P. (2019). Analysis of potential social conflicts in ecotourism development in the Lake Toba Region, North Sumatra. IOP Conference Series. Earth and Environmental Science 399, 012042.
Analysis of potential social conflicts in ecotourism development in the Lake Toba Region, North Sumatra.Crossref | GoogleScholarGoogle Scholar |

Thomsen, E., Herbeck, L. S., and Jennerjahn, T. C. (2020). The end of resilience: surpassed nitrogen thresholds in coastal waters led to severe seagrass loss after decades of exposure to aquaculture effluents. Marine Environmental Research 160, 104986.
The end of resilience: surpassed nitrogen thresholds in coastal waters led to severe seagrass loss after decades of exposure to aquaculture effluents.Crossref | GoogleScholarGoogle Scholar | 32907724PubMed |

Tiller, R., Brekken, T., and Bailey, J. (2012). Norwegian aquaculture expansion and Integrated Coastal Zone Management (ICZM): simmering conflicts and competing claims. Marine Policy 36, 1086–1095.
Norwegian aquaculture expansion and Integrated Coastal Zone Management (ICZM): simmering conflicts and competing claims.Crossref | GoogleScholarGoogle Scholar |

Topp, E., Larsson, D. G. J., Miller, D. N., Van den Eede, C., and Virta, M. P. J. (2018). Antimicrobial resistance and the environment: assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing. FEMS Microbiology Ecology 94, fix185.
Antimicrobial resistance and the environment: assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing.Crossref | GoogleScholarGoogle Scholar | 29309580PubMed |

Tsutsumi, H., Kikuchi, T., Tanaka, M., Higashi, T., Imasaka, K., and Miyazaki, M. (1991). Benthic faunal succession in a cove organically polluted by fish farming. Marine Pollution Bulletin 23, 233–238.
Benthic faunal succession in a cove organically polluted by fish farming.Crossref | GoogleScholarGoogle Scholar |

Twarowska, J. G., Westerman, P. W., and Losordo, T. M. (1997). Water treatment and waste characterization evaluation of an intensive recirculating fish production system. Aquacultural Engineering 16, 133–147.
Water treatment and waste characterization evaluation of an intensive recirculating fish production system.Crossref | GoogleScholarGoogle Scholar |

Valiela, I., Bowen, J. L., and York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51, 807–815.
Mangrove forests: one of the world’s threatened major tropical environments.Crossref | GoogleScholarGoogle Scholar |

Veuthey, S., and Gerber, J. F. (2012). Accumulation by dispossession in coastal Ecuador: Shrimp farming, local resistance and the gender structure of mobilizations. Global Environmental Change 22, 611–622.
Accumulation by dispossession in coastal Ecuador: Shrimp farming, local resistance and the gender structure of mobilizations.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., Freire, C. A., and Simberloff, D. (2009). Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10, 98–108.
Introduction of non-native freshwater fish can certainly be bad.Crossref | GoogleScholarGoogle Scholar |

Willis, C. (2000). Antibiotics in the food chain: their impact on the consumer. Reviews in Medical Microbiology : a Journal of the Pathological Society of Great Britain and Ireland 11, 153–160.
Antibiotics in the food chain: their impact on the consumer.Crossref | GoogleScholarGoogle Scholar |

Wolanski, E., Spagnol, S., Thomas, S., Moore, K., Alongi, D. M., Trott, L., and Davidson, A. (2000). Modelling and visualizing the fate of shrimp pond effluent in a mangrove-fringed tidal creek. Estuarine, Coastal and Shelf Science 50, 85–97.
Modelling and visualizing the fate of shrimp pond effluent in a mangrove-fringed tidal creek.Crossref | GoogleScholarGoogle Scholar |

Wu, R. S. S. (1995). The environmental impact of marine fish culture: towards a sustainable future. Marine Pollution Bulletin 31, 159–166.
The environmental impact of marine fish culture: towards a sustainable future.Crossref | GoogleScholarGoogle Scholar |

Wu, R. S. S., Lam, K. S., MacKay, D. W., Lau, T. C., and Yam, V. (1994). Impact of marine fish farming on water quality and bottom sediment: a case study in the sub-tropical environment. Marine Environmental Research 38, 115–145.
Impact of marine fish farming on water quality and bottom sediment: a case study in the sub-tropical environment.Crossref | GoogleScholarGoogle Scholar |

Young, N., Brattland, C., Digiovanni, C., Hersoug, B., Johnsen, J. P., Karlsen, K. M., Kvalvik, I., Olofsson, E., Simonsen, K., Solås, A. M., and Thorarensen, H. (2019). Limitations to growth: social-ecological challenges to aquaculture development in five wealthy nations. Marine Policy 104, 216–224.
Limitations to growth: social-ecological challenges to aquaculture development in five wealthy nations.Crossref | GoogleScholarGoogle Scholar |