Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Genome-wide phylogenetic study of Percomorpha providing robust support for previous molecular classification

Chenyan Shou A and Zhiqiang Han https://orcid.org/0000-0002-2898-2195 A B
+ Author Affiliations
- Author Affiliations

A Fishery College, Zhejiang Ocean University, 1 Haida South Road, Zhoushan, Zhejiang, 316000, PR China.

B Corresponding author. Email: d6339124@163.com

Marine and Freshwater Research 72(9) 1387-1396 https://doi.org/10.1071/MF20167
Submitted: 29 May 2020  Accepted: 4 February 2021   Published: 26 March 2021

Abstract

Percomorpha is the major branch of Actinopteri, comprising most of the acanthopterygian fishes. The relationships among different Percomorpha groups remain uncertain because of high species diversity, thereby creating challenges for phylogenetic studies on teleosts. The phylogenetic problems of Percomorpha have not been solved using mitochondrial genes and a few nuclear genes. In this study, genomes from 34 representative species from the 7 major taxa of Percomorpha were selected to solve this problem. In all, 29 592 conserved amino acid sites from 206 single-copy orthologous genes were chosen for the reconstruction of phylogenetic trees. The results showed that Gobiaria, whose position is different from that in previous studies, was the earliest branching lineage. The phylogenetic groups in this study were consistent with previous results using mitochondrial DNA and nuclear genes. Thus, this study provides a new perspective and directions for further research on the Percomorpha branch and other higher-order meta-taxonomic relationships of fish. The genome data obtained may be essential for future investigations of phylogeny and molecular evolution.

Keywords: genome, Percomorpha, phylogenetics, single-copy orthologous genes.


References

Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., and Haussler, D. (2004). Ultraconserved elements in the human genome. Science 304, 1321–1325.
Ultraconserved elements in the human genome.Crossref | GoogleScholarGoogle Scholar | 15131266PubMed |

Betancur-R, R., Broughton, R. E., Wiley, E. O., Carpenter, K., López, J. A., Li, C. H., Holcroft, N. I., Arcila, D., Sanciangco, M., Cureton, J. C., Zhang, F. F., Buser, T., Campbell, M. A., Ballesteros, J. A., Roa-Varon, A., Willis, S., Borden, W. C., Rowley, T., Reneau, P. C., Hough, D. J., Lu, G. Q., Grande, T., Arratia, G., and Ortí, G. (2013). The tree of life and a new classification of bony fishes. PLoS Currents 5, e1001550.
The tree of life and a new classification of bony fishes.Crossref | GoogleScholarGoogle Scholar | 23788273PubMed |

Betancur-R, R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G., and Orti, G. (2017). Phylogenetic classification of bony fishes. BMC Evolutionary Biology 17, 162–201.
Phylogenetic classification of bony fishes.Crossref | GoogleScholarGoogle Scholar | 28683774PubMed |

Bian, L., Li, F. H., Ge, J. L., Wang, P. F., Chang, Q., Zhang, S. G., Li, J., Liu, C. L., Liu, K., Liu, X. T., Li, X. M., Chen, H. J., Chen, S. Q., Shao, C. W., and Lin, Z. S. (2020). Chromosome-level genome assembly of the greenfin horse-faced filefish (Thamnaconus septentrionalis) using Oxford Nanopore PromethION sequencing and Hi-C technology. Molecular Ecology Resources 20, 1069–1079.
Chromosome-level genome assembly of the greenfin horse-faced filefish (Thamnaconus septentrionalis) using Oxford Nanopore PromethION sequencing and Hi-C technology.Crossref | GoogleScholarGoogle Scholar | 32390337PubMed |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Chen, D. G., and Zhang, M. Z. (2015). Perciformes. In ‘Marine Fishes of China’. pp. 868–880. (China Ocean University Press: Tsingtao, PR China.)

Chen, W. J., Bonillo, C., and Lecointre, G. (2003). Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution 26, 262–288.
Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa.Crossref | GoogleScholarGoogle Scholar | 12565036PubMed |

Crawford, N. G., Parham, J. F., Sellas, A. B., Faircloth, B. C., Glenn, T. C., Papenfuss, T. J., Henderson, J. B., Hansen, M. H., and Simison, W. B. (2015). A phylogenomic analysis of turtles. Molecular Phylogenetics and Evolution 83, 250–257.
A phylogenomic analysis of turtles.Crossref | GoogleScholarGoogle Scholar | 25450099PubMed |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2011). ProtTest-HPC: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165.
ProtTest-HPC: fast selection of best-fit models of protein evolution.Crossref | GoogleScholarGoogle Scholar | 21335321PubMed |

Dettaï, A., and Lecointre, G. (2008). New insights into the organization and evolution of vertebrate IRBP genes and utility of IRBP gene sequences for the phylogenetic study of the Acanthomorpha (Actinopterygii: Teleostei). Molecular Phylogenetics and Evolution 48, 258–269.
New insights into the organization and evolution of vertebrate IRBP genes and utility of IRBP gene sequences for the phylogenetic study of the Acanthomorpha (Actinopterygii: Teleostei).Crossref | GoogleScholarGoogle Scholar | 18499481PubMed |

Driskell, A. C., Ane, C., Burleigh, J. G., McMahon, M. M., O’Meara, B. C., and Sanderson, M. J. (2004). Prospects for building the tree of life from large sequence databases. Science 306, 1172–1174.
Prospects for building the tree of life from large sequence databases.Crossref | GoogleScholarGoogle Scholar | 15539599PubMed |

Eisen, J. A., and Fraser, C. M. (2003). Phylogenomics: intersection of evolution and genomics. Science 300, 1706–1707.
Phylogenomics: intersection of evolution and genomics.Crossref | GoogleScholarGoogle Scholar | 12805538PubMed |

Emms, D. M., and Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16, 157.
OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy.Crossref | GoogleScholarGoogle Scholar | 26243257PubMed |

Esselstyn, J. A., Oliveros, C. H., Swanson, M. T., and Faircloth, B. C. (2017). Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biology and Evolution 9, 2308–2321.
Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements.Crossref | GoogleScholarGoogle Scholar | 28934378PubMed |

Faircloth, B. C., Sorenson, L., Santini, F., and Alfaro, M. E. (2013). A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs). PLoS One 8, e65923.
A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs).Crossref | GoogleScholarGoogle Scholar | 23824177PubMed |

Giarla, T. C., and Esselstyn, J. A. (2015). The challenges of resolving a rapid, recent radiation: empirical and simulated phylogenomics of Philippine shrews. Systematic Biology 64, 727–740.
The challenges of resolving a rapid, recent radiation: empirical and simulated phylogenomics of Philippine shrews.Crossref | GoogleScholarGoogle Scholar | 25979143PubMed |

Gilbert, P. S., Chang, J., Pan, C., Sobel, E., Sinsheimer, J. S., Faircloth, B., and Alfaro, M. E. (2015). Genome-wide ultraconserved elements exhibit higher phylogenetic informativeness than traditional gene markers in percomorph fishes. Molecular Phylogenetics and Evolution 92, 140–146.
Genome-wide ultraconserved elements exhibit higher phylogenetic informativeness than traditional gene markers in percomorph fishes.Crossref | GoogleScholarGoogle Scholar | 26079130PubMed |

Harrington, R. C., Faircloth, B. C., Eytan, R. I., Smith, W. L., Near, T. J., Alfaro, M. E., and Friedman, M. (2016). Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evolutionary Biology 16, 224.
Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye.Crossref | GoogleScholarGoogle Scholar | 27769164PubMed |

He, Y., Chang, Y., Bao, L. S., Yu, M. J., Li, R., Niu, J. J., Fan, G. Y., Song, W. H., Seim, I., Qin, Y. T., Li, X. M., Liu, J. X., Kong, X. F., Peng, M. T., Sun, M. M., Wang, M. Y., Qu, J. B., Wang, X. G., Liu, X. B., Wu, X. L., Zhao, X., Wang, X. L., Zhang, Y. L., Guo, J., Liu, Y., Liu, K. Q., Wang, Y. L., Zhang, H., Liu, L. Q., Wang, M. Y., Yu, H. Y., Wang, X. B., Cheng, J., Wang, Z. G., Xu, X., Wang, J., Yang, H. M., Lee, S. M., Liu, X., Zhang, Q. Q., and Qi, J. (2019). A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth. Molecular Ecology Resources 19, 1309–1321.
A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth.Crossref | GoogleScholarGoogle Scholar | 31077549PubMed |

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Hughes, L. C., Ortí, G., Huang, Y., Sun, Y., Baldwin, C. C., Thompson, A. W., Arcila, D., Betancur-R, R., Li, C. H., Becker, L., Bellorae, N., Zhao, X. M., Li, X. F., Wang, M., Fang, C., Xie, B., Zhou, Z. C., Huang, H., Chen, S. L., Venkatesh, B., and Shi, Q. (2018). Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proceedings of the National Academy of Sciences of the United States of America 115, 6249–6254.
Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.Crossref | GoogleScholarGoogle Scholar | 29760103PubMed |

Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M. S., Zavidovych, V., Subramanian, S., Gabaldon, T., Capella-Gutierrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow, B., Warren, W. C., Ray, D., Green, R. E., Bruford, M. W., Zhan, X., Dixon, A., Li, S., Li, N., Huang, Y., Derryberry, E. P., Bertelsen, M. F., Sheldon, F. H., Brumfield, R. T., Mello, C. V., Lovell, P. V., Wirthlin, M., Schneider, M. P., Prosdocimi, F., Samaniego, J. A., Vargas Velazquez, A. M., Alfaro-Nunez, A., Campos, P. F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce, M., Lambert, D. M., Zhou, Q., Perelman, P., Driskell, A. C., Shapiro, B., Xiong, Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q., Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F. E., Braun, M., Fjeldsa, J., Orlando, L., Barker, F. K., Jonsson, K. A., Johnson, W., Koepfli, K. P., O’Brien, S., Haussler, D., Ryder, O. A., Rahbek, C., Willerslev, E., Graves, G. R., Glenn, T. C., McCormack, J., Burt, D., Ellegren, H., Alstrom, P., Edwards, S. V., Stamatakis, A., Mindell, D. P., Cracraft, J., Braun, E. L., Warnow, T., Jun, W., Gilbert, M. T., and Zhang, G. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331.
Whole-genome analyses resolve early branches in the tree of life of modern birds.Crossref | GoogleScholarGoogle Scholar | 25504713PubMed |

Johnson, D. G., and Patterson, C. (1993). Percomorph phylogeny: a survey of Acanthomorphs and a new proposal. Bulletin of Marine Science 52, 554–626.

Leaché, A. D., Banbury, B. L., Linkem, C. W., and de Oca, A. N. (2016). Phylogenomics of a rapid radiation: is chromosomal evolution linked to increased diversification in north American spiny lizards (genus Sceloporus)? BMC Evolutionary Biology 16, 63.
Phylogenomics of a rapid radiation: is chromosomal evolution linked to increased diversification in north American spiny lizards (genus Sceloporus)?Crossref | GoogleScholarGoogle Scholar | 27000803PubMed |

Li, C. H., Ortí, G., Zhang, G., and Lu, G. Q. (2007). A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology 7, 44.
A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study.Crossref | GoogleScholarGoogle Scholar |

Li, B., Dettaï, A., Cruaud, C., Couloux, A., Desoutter-Meniger, M., and Lecointre, G. (2009). RNF213, a new nuclear marker for acanthomorph phylogeny. Molecular Phylogenetics and Evolution 50, 345–363.
RNF213, a new nuclear marker for acanthomorph phylogeny.Crossref | GoogleScholarGoogle Scholar | 19059489PubMed |

Li, C. H., Ricardo, B. R., Smith, W. L., and Ortí, G. (2011). Monophyly and interrelationships of snook and barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics. Molecular Phylogenetics and Evolution 60, 463–471.
Monophyly and interrelationships of snook and barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Lukoschek, V., Keogh, J. S., and Avise, J. C. (2012). Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Systematic Biology 61, 22.
Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.Crossref | GoogleScholarGoogle Scholar | 21840843PubMed |

Mayden, R. L., and Chen, W. J. (2010). The world’s smallest vertebrate species of the genus Paedocypris: a new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution 57, 152–175.
The world’s smallest vertebrate species of the genus Paedocypris: a new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes).Crossref | GoogleScholarGoogle Scholar | 20398777PubMed |

McCormack, J. E., Faircloth, B. C., Crawford, N. G., Gowaty, P. A., Brumfield, R. T., and Glenn, T. C. (2012). Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Research 22, 746–754.
Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis.Crossref | GoogleScholarGoogle Scholar | 22207614PubMed |

Miya, M., and Nishida, M. (1999). Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Marine Biotechnology 1, 416–426.
Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes.Crossref | GoogleScholarGoogle Scholar | 10525676PubMed |

Miya, M., Kawaguchi, A., and Nishida, M. (2001). Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Molecular Biology and Evolution 18, 1993–2009.
Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences.Crossref | GoogleScholarGoogle Scholar | 11606696PubMed |

Miya, M., Takeshima, H., Endo, H., Ishiguro, N. B., Inoue, J. G., Mukai, T., Satoh, T. P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S. M., and Nishida, M. (2003). Major patterns of higher teleostean phylogenies:a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26, 121–138.
Major patterns of higher teleostean phylogenies:a new perspective based on 100 complete mitochondrial DNA sequences.Crossref | GoogleScholarGoogle Scholar | 12470944PubMed |

Mu, C. Y., Huang, Z. Y., Chen, Y., Wang, B., Su, Y. H., Li, Y., Sun, Z. M., Xu, Q., Zhao, W. M., and Chen, G. H. (2014). Completely sequencing and gene organization of the Anser cygnoides mitochondrial genome. Journal of Agricultural Biotechnology 22, 1482–1493.
Completely sequencing and gene organization of the Anser cygnoides mitochondrial genome.Crossref | GoogleScholarGoogle Scholar |

Nakamura, Y., Mori, K., Saitoh, K., Oshima, K., Mekuchi, M., Sugaya, T., Shigenobu, Y., Ojima, N., Muta, S., Fujiwara, A., Yasuike, M., Oohara, I., Hirakawa, H., Chowdhury, V. S., Kobayashi, T., Nakajima, K., Sano, M., Wada, T., Tashiro, K., Ikeo, K., Hattori, M., Kuhara, S., Gojobori, T., and Inouye, K. (2013). Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proceedings of the National Academy of Sciences of the United States of America 110, 11061–11066.
Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna.Crossref | GoogleScholarGoogle Scholar | 23781100PubMed |

Nakamura, T., Yamada, K. D., Tomii, K., and Katoh, K. (2018). Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492.
Parallelization of MAFFT for large-scale multiple sequence alignments.Crossref | GoogleScholarGoogle Scholar | 29506019PubMed |

Near, T. J., Eytan, R. I., Dornburg, A., Kuhn, K. L., Moore, J. A., Davis, M. P., Wainwright, P. C., Friedman, M., and Smith, W. L. (2012). Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences of the United States of America 109, 13698–13703.
Resolution of ray-finned fish phylogeny and timing of diversification.Crossref | GoogleScholarGoogle Scholar | 22869754PubMed |

Nei, M., and Kumar, S. (2000). ‘Molecular Evolution and Phylogenetics.’ (Oxford University Press: Oxford, UK.)

Nelson, G. J. (1969). Origin and diversification of teleostean fishes. Annals of the New York Academy of Sciences 167, 18–30.
Origin and diversification of teleostean fishes.Crossref | GoogleScholarGoogle Scholar |

Oliveira, C., Avelino, G. S., Abe, K. T., Mariguela, T. C., Benine, R. C., Ortí, G., Vari, R. P., and Castro, R. M. C. (2011). Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evolutionary Biology 11, 275.
Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling.Crossref | GoogleScholarGoogle Scholar | 21943181PubMed |

Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N., and Delsuc, F. (2005). Heterotachy and long-branch attraction in phylogenetics. BMC Evolutionary Biology 5, 50.
Heterotachy and long-branch attraction in phylogenetics.Crossref | GoogleScholarGoogle Scholar | 16209710PubMed |

Saitoh, K., Miya, M., Inoue, J. G., Ishiguro, N. B., and Nishida, M. (2003). Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. Journal of Molecular Evolution 56, 464–472.
Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography.Crossref | GoogleScholarGoogle Scholar | 12664166PubMed |

Saitoh, K., Sado, T., Mayden, R. L., Hanzawa, N., Nakamura, K., Nishida, M., and Miya, M. (2006). Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. Journal of Molecular Evolution 63, 826–841.
Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences.Crossref | GoogleScholarGoogle Scholar | 17086453PubMed |

Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. W., Richards, S., Weinstock, G. M., Wilson, R. K., Gibbs, R. A., Kent, W. J., Miller, W., and Haussler, D. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15, 1034–1050.
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.Crossref | GoogleScholarGoogle Scholar | 16024819PubMed |

Stamatakis, A., Ott, M., and Ludwig, T. (2005) RAxML-OMP: an efficient program for phylogenetic inference on SMPs. In ‘Parallel Computing Technologies. PaCT 2005’. (Ed. V. Malyshkin) Lecture Notes in Computer Science 3606, pp. 288–302. (Springer.)10.1007/11535294_25

Stout, C. C., Tan, M., Lemmon, A. R., Lemmon, E. M., and Armbruster, J. W. (2016). Resolving Cypriniformes relationships using an anchored enrichment approach. BMC Evolutionary Biology 16, 244.
Resolving Cypriniformes relationships using an anchored enrichment approach.Crossref | GoogleScholarGoogle Scholar | 27829363PubMed |

Streicher, J. W., and Wiens, J. J. (2016). Phylogenomic analyses reveal novel relationships among snake families. Molecular Phylogenetics and Evolution 100, 160–169.
Phylogenomic analyses reveal novel relationships among snake families.Crossref | GoogleScholarGoogle Scholar | 27083862PubMed |

Xu, S. Y., Xiao, S. J., Zhu, S. L., Zeng, X. F., Luo, J., Liu, J. Q., Gao, T. X., and Chen, N. S. (2018). A draft genome assembly of the Chinese sillago (Sillago sinica), the first reference genome for Sillaginidae fishes. GigaScience 7, giy108.
A draft genome assembly of the Chinese sillago (Sillago sinica), the first reference genome for Sillaginidae fishes.Crossref | GoogleScholarGoogle Scholar |

Zhou, Q., Guo, X. Y., Huang, Y., Gao, H. Y., Xu, H., Liu, S. S., Zheng, W. W., Zhang, T. S., Tian, C. X., Zhu, C. H., Lin, H. R., and Chen, S. L. (2020). De novo sequencing and chromosomal‐scale genome assembly of leopard coral grouper, Plectropomus leopardus. Molecular Ecology Resources 20, 1403–1413.
De novo sequencing and chromosomal‐scale genome assembly of leopard coral grouper, Plectropomus leopardus.Crossref | GoogleScholarGoogle Scholar | 32521104PubMed |