Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Everyone has their limits: reproductive mode drives amphibian responses to land use in coastal areas

Leonardo F. B. Moreira https://orcid.org/0000-0002-2753-9933 A C , Jéssica B. da Silva B , Débora S. Knauth B , Soraya Ribeiro B and Leonardo Maltchik B
+ Author Affiliations
- Author Affiliations

A Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Brazil.

B Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Brazil.

C Corresponding author. Email: leonardobm@gmail.com

Marine and Freshwater Research - https://doi.org/10.1071/MF20102
Submitted: 6 April 2020  Accepted: 18 June 2020   Published online: 4 August 2020

Abstract

Small wetlands are strongly bound to surrounding terrestrial habitats, so understanding their suitability after conversion to human land uses is critically important to produce an ecologically centred planning for amphibian species. Here, we explored how responses of amphibian assemblage to habitat conversion were influenced by reproductive modes in freshwater coastal wetlands in southern Brazil. We also assessed whether species from different biomes are affected in different ways by land conversion. Using data from tadpole assemblages in a transition zone between Atlantic Forest and Pampa, we tested the hypothesis that aquatic modes would be more affected by habitat conversion than are foam-nest species. Overall, quantitative data were influenced by the percentage of crop area, whereas assemblage structure derived from presence–absence data was associated with biome type. Species with aquatic egg-laying were influenced by the percentage of crop area, and many species were more abundant in ponds surrounded by up to 15% crop area in a 1000-m radius. However, foam-nest species were not influenced by any variable investigated (crops, planted pastures, urban areas and biome). This study has highlighted that agricultural conversion poses environmental filters to amphibian communities, selecting species according to some traits (adult reproductive strategies and tadpole plasticity).

Additional keywords: agriculture, Atlantic Forest, landscape, Pampa, tadpole.


References

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs 81, 169–193.
The value of estuarine and coastal ecosystem services.Crossref | GoogleScholarGoogle Scholar |

Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F., and Prado, P. I. (2007). Habitat split and the global decline of amphibians. Science 318, 1775–1777.
Habitat split and the global decline of amphibians.Crossref | GoogleScholarGoogle Scholar | 18079402PubMed |

Becker, C. G., Loyola, R. D., Haddad, C. F. B., and Zamudio, K. R. (2010). Integrating species life-history traits and patterns of deforestation in amphibian conservation planning. Diversity & Distributions 16, 10–19.
Integrating species life-history traits and patterns of deforestation in amphibian conservation planning.Crossref | GoogleScholarGoogle Scholar |

Becker, C. G., Bletz, M. C., Greenspan, S. E., Rodriguez, D., Lambertini, C., Jenkinson, T. S., Guimarães, P. R., Assis, A. P. A., Geffers, R., Jarek, M., Toledo, L. F., Vences, M., and Haddad, C. F. B. (2019). Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proceedings of the Royal Society B. Biological Sciences 286, 20191114.
Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian.Crossref | GoogleScholarGoogle Scholar |

Blanchet, G., Legendre, P., and Borcard, D. (2008). Forward selection of spatial explanatory variables. Ecology 89, 2623–2632.
Forward selection of spatial explanatory variables.Crossref | GoogleScholarGoogle Scholar |

Brum, F. T., Gonçalves, L. O., Cappelatti, L., Carlucci, M. B., Debastiani, V. J., Salengue, E. V., Seger, G. D. D. S., Both, C., Bernardo-Silva, J. S., Loyola, R. D., and Duarte, L. da S. (2013). Land use explains the distribution of threatened new world amphibians better than climate. PLoS One 8, e60742.
Land use explains the distribution of threatened new world amphibians better than climate.Crossref | GoogleScholarGoogle Scholar | 23637764PubMed |

Carpenter, S. R., and Lodge, D. M. (1986). Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26, 341–370.
Effects of submersed macrophytes on ecosystem processes.Crossref | GoogleScholarGoogle Scholar |

Carvalho, T., Becker, C. G., and Toledo, L. F. (2017). Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis. Proceedings of the Royal Society B: Biological Sciences 284, .
Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis.Crossref | GoogleScholarGoogle Scholar | 28179514PubMed |

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., and Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67.
Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies.Crossref | GoogleScholarGoogle Scholar |

Cosentino, B. J., Schooley, R. L., and Phillips, C. A. (2011). Connectivity of agroecosystems: dispersal costs can vary among crops. Landscape Ecology 26, 371–379.
Connectivity of agroecosystems: dispersal costs can vary among crops.Crossref | GoogleScholarGoogle Scholar |

Crump, M. L. (2015). Anuran reproductive modes: evolving perspectives. Journal of Herpetology 49, 1–16.
Anuran reproductive modes: evolving perspectives.Crossref | GoogleScholarGoogle Scholar |

Dambros, C. (2014). poncho.R. Available at: https://raw.githubusercontent.com/csdambros/R-functions/master/poncho.R10.6084/m9.figshare.753347

da Silva, F. R., Gibbs, J. P., and Rossa-Feres, D. C. (2011). Breeding habitat and landscape correlates of frog diversity and abundance in a tropical agricultural landscape. Wetlands 31, 1079–1087.
Breeding habitat and landscape correlates of frog diversity and abundance in a tropical agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

da Silva, F. R., Almeida-Neto, M., do Prado, V. H. M., Haddad, C. F. B., and de Cerqueira Rossa-Feres, D. (2012). Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. Journal of Biogeography 39, 1720–1732.
Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |

de Mira-Mendes, C. V., Costa, R. N., Dias, I. R., Carilo Filho, L. M., Mariano, R., Le Pendu, Y., and Solé, M. (2019). Effects of increasing temperature on predator–prey interaction between beetle larvae and tadpoles. Studies on Neotropical Fauna and Environment 54, 163–168.
Effects of increasing temperature on predator–prey interaction between beetle larvae and tadpoles.Crossref | GoogleScholarGoogle Scholar |

Dixo, M., and Metzger, J. P. (2010). The matrix-tolerance hypothesis: an empirical test with frogs in the Atlantic Forest. Biodiversity and Conservation 19, 3059–3071.
The matrix-tolerance hypothesis: an empirical test with frogs in the Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |

Dray, S., Legendre, P., and Peres-Neto, P. R. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196, 483–493.
Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM).Crossref | GoogleScholarGoogle Scholar |

Dufrene, M., and Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.
Species assemblages and indicator species: the need for a flexible asymmetrical approach.Crossref | GoogleScholarGoogle Scholar |

Fuentes-Rodríguez, F., Juan, M., Gallego, I., Lusi, M., Fenoy, E., León, D., Peñalver, P., Toja, J., and Casas, J. J. (2013). Diversity in Mediterranean farm ponds: trade-offs and synergies between irrigation modernisation and biodiversity conservation. Freshwater Biology 58, 63–78.
Diversity in Mediterranean farm ponds: trade-offs and synergies between irrigation modernisation and biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Golden, H. E., Creed, I. F., Ali, G., Basu, N. B., Neff, B. P., Rains, M. C., McLaughlin, D. L., Alexander, L. C., Ameli, A. A., Christensen, J. R., Evenson, G. R., Jones, C. N., Lane, C. R., and Lang, M. (2017). Integrating geographically isolated wetlands into land management decisions. Frontiers in Ecology and the Environment 15, 319–327.
Integrating geographically isolated wetlands into land management decisions.Crossref | GoogleScholarGoogle Scholar | 30505246PubMed |

Haddad, C. F. B., and Prado, C. P. A. (2005). Reproductive modes in frogs and their unexpected diversity in the Atlantic forest of Brazil. Bioscience 55, 207–217.
Reproductive modes in frogs and their unexpected diversity in the Atlantic forest of Brazil.Crossref | GoogleScholarGoogle Scholar |

Haddad, C. F. B., Toledo, L. F., Prado, C. P. A., Loebmann, D., Gasparini, J. L., and Sazima, I. (2013). ‘Guia Dos Anfíbios da Mata Atlântica: Diversidade e Biologia.’ (Anolisbooks: São Paulo, Brazil.)

Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D.-X., and Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1, e1500052.
Habitat fragmentation and its lasting impact on Earth’s ecosystems.Crossref | GoogleScholarGoogle Scholar | 26601154PubMed |

Hartel, T., Nemes, S., Cogălniceanu, D., Öllerer, K., Schweiger, O., Moga, C. I., and Demeter, L. (2007). The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583, 173–182.
The effect of fish and aquatic habitat complexity on amphibians.Crossref | GoogleScholarGoogle Scholar |

Hissa, D. C., Vasconcelos, I. M., Fontenele, A., Carvalho, U., Lúcia, V., Nogueira, R., Cascon, P., Saraiva, A., Antunes, L., Macedo, G. R., Maria, V., and Melo, M. (2008). Novel surfactant proteins are involved in the structure and stability of foam nests from the frog Leptodactylus vastus. The Journal of Experimental Biology 211, 2707–2711.
Novel surfactant proteins are involved in the structure and stability of foam nests from the frog Leptodactylus vastus.Crossref | GoogleScholarGoogle Scholar | 18689424PubMed |

Hsieh, T. C., Ma, K. H., and Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456.
iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers).Crossref | GoogleScholarGoogle Scholar |

Jesse, W. A. M., Behm, J. E., Helmus, M. R., and Ellers, J. (2018). Human land use promotes the abundance and diversity of exotic species on Caribbean islands. Global Change Biology 24, 4784–4796.
Human land use promotes the abundance and diversity of exotic species on Caribbean islands.Crossref | GoogleScholarGoogle Scholar |

Ji, G., Havens, K. E., Beaver, J. R., and East, T. L. (2018). Recovery of plankton from hurricane impacts in a large shallow lake. Freshwater Biology 63, 366–379.
Recovery of plankton from hurricane impacts in a large shallow lake.Crossref | GoogleScholarGoogle Scholar |

Kark, S., Allnutt, T. F., Levin, N., Manne, L. L., and Williams, P. H. (2007). The role of transitional areas as avian biodiversity centres. Global Ecology and Biogeography 16, 187–196.
The role of transitional areas as avian biodiversity centres.Crossref | GoogleScholarGoogle Scholar |

Knauth, D. S., Pires, M. M., Stenert, C., and Maltchik, L. (2019). Disentangling the role of niche-based and spatial processes on anuran beta diversity in temporary ponds along a forest–grassland transition. Aquatic Sciences 81, 63.
Disentangling the role of niche-based and spatial processes on anuran beta diversity in temporary ponds along a forest–grassland transition.Crossref | GoogleScholarGoogle Scholar |

Kopp, K., Wachlevski, M., and Eterovick, P. C. (2006). Environmental complexity reduces tadpole predation by water bugs. Canadian Journal of Zoology 84, 136–140.
Environmental complexity reduces tadpole predation by water bugs.Crossref | GoogleScholarGoogle Scholar |

Lanés, L. E. K., Reichard, M., de Moura, R. G., Godoy, R. S., and Maltchik, L. (2018). Environmental predictors for annual fish assemblages in subtropical grasslands of South America: the role of landscape and habitat characteristics. Environmental Biology of Fishes 101, 963–977.
Environmental predictors for annual fish assemblages in subtropical grasslands of South America: the role of landscape and habitat characteristics.Crossref | GoogleScholarGoogle Scholar |

Legendre, P. (2014). Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23, 1324–1334.
Interpreting the replacement and richness difference components of beta diversity.Crossref | GoogleScholarGoogle Scholar |

Legendre, P., and Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280.
Ecologically meaningful transformations for ordination of species data.Crossref | GoogleScholarGoogle Scholar | 28547606PubMed |

Machado, I. F., and Maltchik, L. (2010). Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands? Aquatic Conservation 20, 39–46.
Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands?Crossref | GoogleScholarGoogle Scholar |

Machado, I. F., Moreira, L. F. B., and Maltchik, L. (2012). Effects of pine invasion on anurans assemblage in southern Brazil coastal ponds. Amphibia-Reptilia 33, 227–237.
Effects of pine invasion on anurans assemblage in southern Brazil coastal ponds.Crossref | GoogleScholarGoogle Scholar |

Maciel, E. A., Oliveira-Filho, A. T., and Eisenlohr, P. V. (2016). Prioritizing rare tree species of the Cerrado–Amazon ecotone: warnings and insights emerging from a comprehensive transitional zone of South America. Natureza & Conservação 14, 74–82.
Prioritizing rare tree species of the Cerrado–Amazon ecotone: warnings and insights emerging from a comprehensive transitional zone of South America.Crossref | GoogleScholarGoogle Scholar |

Maneyro, R., Loebmann, D., Tozetti, A. M., and da Fonte, L. F. M. (2017). ‘Amphibians of the Coastal Plains of Southern Brazil and Uruguay.’ (Anolisbooks: São Paulo, Brazil.)

Mann, R. M., Hyne, R. V., Choung, C. B., and Wilson, S. P. (2009). Amphibians and agricultural chemicals: review of the risks in a complex environment. Environmental Pollution 157, 2903–2927.
Amphibians and agricultural chemicals: review of the risks in a complex environment.Crossref | GoogleScholarGoogle Scholar | 19500891PubMed |

MapBiomas (2019). Collection 3.0 of Brazilian Land Cover & Use Map Series. Available at: www.mapbiomas.org [verified 22 May 2019].

Marques, C. M., Menezes, S., and Liebsch, D. (2015). Coastal plain forests in southern and southeastern Brazil: ecological drivers, floristic patterns and conservation status. Brazilian Journal of Botany 38, 1–18.
Coastal plain forests in southern and southeastern Brazil: ecological drivers, floristic patterns and conservation status.Crossref | GoogleScholarGoogle Scholar |

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation 127, 247–260.
Urbanization as a major cause of biotic homogenization.Crossref | GoogleScholarGoogle Scholar |

Medina, R. G., Ponssa, M. L., and Aráoz, E. (2016). Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco. PeerJ 2016, .
Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco.Crossref | GoogleScholarGoogle Scholar |

Melo, L. S. O., Garey, M. V., and Rossa-Feres, D. C. (2018). Looking for a place: how are tadpoles distributed within tropical ponds and streams? Herpetology Notes 11, 379–386.

Méndez-Narváez, J., Flechas, S. V., and Amézquita, A. (2015). Foam nests provide context-dependent thermal insulation to embryos of three leptodactylid frogs. Physiological and Biochemical Zoology 88, 246–253.
Foam nests provide context-dependent thermal insulation to embryos of three leptodactylid frogs.Crossref | GoogleScholarGoogle Scholar | 25860824PubMed |

Millennium Ecosystem Assessment (2005). ‘Ecosystems and Human Well-being.’ (Island Press: Washington, DC, USA.)

Moorman, M. C., Augspurger, T., Stanton, J. D., and Smith, A. (2017). Where’s the grass? Disappearing submerged aquatic vegetation and declining water quality in Lake Mattamuskeet. Journal of Fish and Wildlife Management 8, 401–417.
Where’s the grass? Disappearing submerged aquatic vegetation and declining water quality in Lake Mattamuskeet.Crossref | GoogleScholarGoogle Scholar |

Moreira, L. F. B., and Maltchik, L. (2014). Does organic agriculture benefit anuran diversity in rice fields? Wetlands 34, 725–733.
Does organic agriculture benefit anuran diversity in rice fields?Crossref | GoogleScholarGoogle Scholar |

Moreira, L. F. B., Machado, I. F., Garcia, T. V., and Maltchik, L. (2010). Factors influencing anuran distribution in coastal dune wetlands in southern Brazil. Journal of Natural History 44, 1493–1507.
Factors influencing anuran distribution in coastal dune wetlands in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Moreira, L. F. B., Moura, R. G., and Maltchik, L. (2016a). Stop and ask for directions: factors affecting anuran detection and occupancy in Pampa farmland ponds. Ecological Research 31, 65–74.
Stop and ask for directions: factors affecting anuran detection and occupancy in Pampa farmland ponds.Crossref | GoogleScholarGoogle Scholar |

Moreira, L. F. B., Solino-Carvalho, L. A., Strüssmann, C., and Silveira, R. M. L. (2016b). Effects of exotic pastures on tadpole assemblages in Pantanal floodplains: assessing changes in species composition. Amphibia–Reptilia 37, 179–190.
Effects of exotic pastures on tadpole assemblages in Pantanal floodplains: assessing changes in species composition.Crossref | GoogleScholarGoogle Scholar |

Newbold, T., Hudson, L. N., Hill, S. L. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D. L. P., Martin, C. D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H. R. P., Purves, D. W., Robinson, A., Simpson, J., Tuck, S. L., Weiher, E., White, H. J., Ewers, R. M., Mace, G. M., Scharlemann, J. P. W., and Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50.
Global effects of land use on local terrestrial biodiversity.Crossref | GoogleScholarGoogle Scholar | 25832402PubMed |

Nomura, F., do Prado, V. H. M., da Silva, F. R., Borges, R. E., Dias, N. Y. N., and Rossa-feres, D. D. C. (2011). Are you experienced? Predator type and predator experience trade-offs in relation to tadpole mortality rates. Journal of Zoology 284, 144–150.
Are you experienced? Predator type and predator experience trade-offs in relation to tadpole mortality rates.Crossref | GoogleScholarGoogle Scholar |

Nowakowski, A. J., Frishkoff, L. O., Thompson, M. E., Smith, T. M., and Todd, B. D. (2018). Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe. Proceedings of the National Academy of Sciences of the United States of America 115, E3454–E3462.
Phylogenetic homogenization of amphibian assemblages in human-altered habitats across the globe.Crossref | GoogleScholarGoogle Scholar | 29555733PubMed |

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, B. R., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H. (2019). vegan: Community ecology package. Available at: CRAN.R-project.org/package=vegan [verified 24 July 2020].

Pereira, E. B., Pinto-ledezma, J. N., Freitas, C. G. D. E., Villalobos, F., Collevatti, R. G., and Maciel, N. M. (2017). Evolution of the anuran foam nest: trait conservatism and lineage diversification. Biological Journal of the Linnean Society. Linnean Society of London 122, 814–823.
Evolution of the anuran foam nest: trait conservatism and lineage diversification.Crossref | GoogleScholarGoogle Scholar |

Piatti, L., Souza, F. L., and Filho, P. L. (2010). Anuran assemblage in a rice field agroecosystem in the Pantanal of central Brazil. Journal of Natural History 44, 1215–1224.
Anuran assemblage in a rice field agroecosystem in the Pantanal of central Brazil.Crossref | GoogleScholarGoogle Scholar |

Prado, V. H. M., and Rossa-Feres, D. C. (2014). Multiple determinants of anuran richness and occurrence in an agricultural region in south-eastern Brazil. Environmental Management 53, 823–837.
Multiple determinants of anuran richness and occurrence in an agricultural region in south-eastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Pulsford, S. A., Barton, P. S., Driscoll, D. A., and Lindenmayer, D. B. (2019). Interactive effects of land use, grazing and environment on frogs in an agricultural landscape. Agriculture, Ecosystems & Environment 281, 25–34.
Interactive effects of land use, grazing and environment on frogs in an agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

Queiroz, C. de S., da Silva, F. R., and Rossa-Feres, D. de C. (2015). The relationship between pond habitat depth and functional tadpole diversity in an agricultural landscape. Royal Society Open Science 2, 150165.
The relationship between pond habitat depth and functional tadpole diversity in an agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, J., Colli, G. R., Caldwell, J. P., Ferreira, E., Batista, R., and Soares, A. (2017). Evidence of neotropical anuran community disruption on rice crops: a multidimensional evaluation. Biodiversity and Conservation 26, 3363–3383.
Evidence of neotropical anuran community disruption on rice crops: a multidimensional evaluation.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, J. W., Siqueira, T., Brejão, G. L., and Zipkin, E. F. (2018). Effects of agriculture and topography on tropical amphibian species and communities. Ecological Applications 28, 1554–1564.
Effects of agriculture and topography on tropical amphibian species and communities.Crossref | GoogleScholarGoogle Scholar | 29729054PubMed |

Roberts, D. W. (2016). labdsv: ordination and multivariate analysis for ecology. Available at: http://cran.r-project.org/package=labdsv [verified 24 July 2020].

Schiesari, L., and Corrêa, D. T. (2016). Consequences of agroindustrial sugarcane production to freshwater biodiversity. Global Change Biology. Bioenergy 8, 644–657.
Consequences of agroindustrial sugarcane production to freshwater biodiversity.Crossref | GoogleScholarGoogle Scholar |

Scrine, J., Jochum, M., Ólafsson, J. S., and O’Gorman, E. J. (2017). Interactive effects of temperature and habitat complexity on freshwater communities. Ecology and Evolution 7, 9333–9346.
Interactive effects of temperature and habitat complexity on freshwater communities.Crossref | GoogleScholarGoogle Scholar | 29187972PubMed |

Silva, T. S., and Tagliani, P. R. A. (2012). Environmental planning in the medium littoral of the Rio Grande do Sul coastal plain, southern Brazil: elements for coastal management. Ocean and Coastal Management 59, 20–30.
Environmental planning in the medium littoral of the Rio Grande do Sul coastal plain, southern Brazil: elements for coastal management.Crossref | GoogleScholarGoogle Scholar |

Titon, B., and Gomes, F. R. (2015). Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLoS One 10, e0140761.
Relation between water balance and climatic variables associated with the geographical distribution of anurans.Crossref | GoogleScholarGoogle Scholar | 26469787PubMed |

Vasconcelos, T. S., da Silva, F. R., dos Santos, T. G., Prado, V. H. M., and Provete, D. B. (2019). ‘Biogeographic Patterns of South American Anurans.’ (Springer Nature Switzerland AG: Cham, Switzerland.)https://doi.org/10.1007/978-3-030-26296-9

Watling, J. I., and Braga, L. (2015). Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landscape Ecology 30, 1449–1459.
Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape.Crossref | GoogleScholarGoogle Scholar |

Werner, E. E., Yurewicz, K. L., Skelly, D. K., and Relyea, R. A. (2007). Turnover in an amphibian metacommunity: the role of local and regional factors. Oikos 116, 1713–1725.
Turnover in an amphibian metacommunity: the role of local and regional factors.Crossref | GoogleScholarGoogle Scholar |