Age and growth of two sharpnose shark species (Rhizoprionodon lalandii and R. porosus) in subtropical waters of the south-western Atlantic
Jéssica T. Corsso A , Otto B. F. Gadig B , Fabio P. Caltabellotta C D , Rodrigo Barreto E and Fabio S. Motta A FA Laboratório de Ecologia e Conservação Marinha, Instituto do Mar, Universidade Federal de São Paulo, Rua Dr Carvalho de Mendonça 144, Encruzilhada, Santos, SP 11070-100, Brazil.
B Laboratório de Pesquisa de Elasmobrânquios, Instituto de Biociências, Universidade Estadual Paulista, Campus do Litoral Paulista, Praça Infante Dom Henrique, Parque Bitaru, São Vicente, SP 11330-900, Brazil.
C Coastal Oregon Marine Experiment Station, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA.
D Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, 118 Newins-Ziegler Hall, PO Box 110410, Gainesville, FL 32611-0410, USA.
E Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha do Sudeste e Sul do Brasil, Instituto Chico Mendes de Conservação da Biodiversidade, Avenida Carlos Ely Castro, 195 Centro, Itajaí SC, 88301-445, Brazil.
F Corresponding author. Email: fmotta@unifesp.br
Marine and Freshwater Research - https://doi.org/10.1071/MF19379
Submitted: 5 December 2019 Accepted: 17 July 2020 Published online: 17 September 2020
Abstract
The age and growth of subtropical populations of the Brazilian and Caribbean sharpnose sharks (Rhizoprionodon lalandii and R. porosus respectively) were determined by combining direct and indirect ageing methods, maximising the use of available information. Using vertebrae ageing for R. lalandii, the theoretical maximum length L∞ and growth coefficient k were 661.9 mm and 1.14 year–1 for males and 751.7 mm and 0.59 year–1 for females. Vertebrae were not sampled for R. porosus. Values of L∞ and k from electronic length–frequency analyses (ELEFAN) were 762 mm and 0.71 year–1 for male R. lalandii, 791 mm and 0.67 year–1 for female R. lalandii, 1040 mm and 0.41 year–1 for male R. porosus and 1165 mm and 0.31 year–1 for female R. porosus. Growth during the first year of life in relation to birth size was 80.3% for R. lalandii and 55% for R. porosus. Both species exhibit rapid growth, primarily in the first year of life. The growth estimates for R. lalandii and R. porosus are even faster than those reported in previous studies from tropical populations.
Keywords: elasmobranch, fishery management, length–frequency ageing, life history, vertebrae ageing.
References
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In ‘Proceedings of the 2nd International Symposium on Information Theory’, 2–8 September 1971, Tsahkadsor, Armenia, USSR. (Eds B. N. Petrov, and F. Csáki.) pp. 267–281. (Akadémiai Kiado: Budapest, Hungary.)Araya, M., and Cubillos, L. A. (2006). Evidence of two-phase growth in elasmobranchs. Environmental Biology of Fishes 77, 293–300.
| Evidence of two-phase growth in elasmobranchs.Crossref | GoogleScholarGoogle Scholar |
Ba, A., Diouf, K., Guilhamon, F., and Panfili, J. (2015). Slow growth of the overexploited milk shark Rhizoprionodon acutus affects its sustainability in West Africa. Journal of Fish Biology 87, 912–929.
| Slow growth of the overexploited milk shark Rhizoprionodon acutus affects its sustainability in West Africa.Crossref | GoogleScholarGoogle Scholar | 26436372PubMed |
Baje, L., Smart, J. J., Chin, A., White, W. T., and Simpfendorfer, C. A. (2018). Age, growth and maturity of the Australian sharpnose shark Rhizoprionodon taylori from the Gulf of Papua. PLoS One 13, e0206581.
| Age, growth and maturity of the Australian sharpnose shark Rhizoprionodon taylori from the Gulf of Papua.Crossref | GoogleScholarGoogle Scholar | 30379918PubMed |
Barreto, R. R., Lessa, R. P., Hazin, F. H., and Santana, F. M. (2011). Age and growth of the blacknose shark, Carcharhinus acronotus (Poey, 1860) off the northeastern Brazilian Coast. Fisheries Research 110, 170–176.
| Age and growth of the blacknose shark, Carcharhinus acronotus (Poey, 1860) off the northeastern Brazilian Coast.Crossref | GoogleScholarGoogle Scholar |
Barreto, R. R., Bornatowski, H., Motta, F. S., Santander-Neto, J., Vianna, G. M. S., and Lessa, R. (2017). Rethinking use and trade of pelagic sharks from Brazil. Marine Policy 85, 114–122.
| Rethinking use and trade of pelagic sharks from Brazil.Crossref | GoogleScholarGoogle Scholar |
Beamish, R. J., and Fournier, D. A. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38, 982–983.
| A method for comparing the precision of a set of age determinations.Crossref | GoogleScholarGoogle Scholar |
Beverton, R. J. H., and Holt, S. J. (1957). On the dynamics of exploited fish populations. Ministry of Agriculture, Fisheries & Food Fisheries Investigations, Series 2, 19, Her Majesty’s Stationery Office, London, UK.
Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association 43, 572–574.
| A test for symmetry in contingency tables.Crossref | GoogleScholarGoogle Scholar | 18123073PubMed |
Branstetter, S. (1987). Age and growth validation of newborns sharks held in laboratory aquaria, with comments on the life history of the Atlantic sharpnose shark, Rhizoprionodon terraenovae. Copeia 1987, 291–300.
| Age and growth validation of newborns sharks held in laboratory aquaria, with comments on the life history of the Atlantic sharpnose shark, Rhizoprionodon terraenovae.Crossref | GoogleScholarGoogle Scholar |
Branstetter, S. (1990). Early life-history implications of selected carcharhinoid and lamnoid sharks of the Northwest Atlantic. In ‘Elasmobranch as Living Resources: Advances in the Biology, Ecology, Systematics, and the Status of the Fisheries’. (Eds H. L. Pratt, S. H. Gruber, and T. Taniuchi.) NOAA Technical Report 90, pp. 17–28. (NOAA, US Department of Commerce: Washington, DC, USA.)
Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach’, 2nd edn. (Springer: New York, NY, USA.)
Cailliet, G. M. (2015). Perspectives on elasmobranch life-history studies: a focus on age validation and relevance to fishery management. Journal of Fish Biology 87, 1271–1292.
| Perspectives on elasmobranch life-history studies: a focus on age validation and relevance to fishery management.Crossref | GoogleScholarGoogle Scholar | 26709208PubMed |
Cailliet, G. M., and Goldman, K. J. (2004). Age determination and validation in chondrichthyan fishes. In ‘Biology of Sharks and their Relatives’. (Eds J. Carrier, J. A. Musick, and M. R. Heithaus.) pp. 399–447. (CRC Press: Boca Raton, FL, USA.)
Cailliet, G. M., Smith, W. D., Mollet, H. F., and Goldman, K. J. (2006). Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Environmental Biology of Fishes 77, 211–228.
| Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting.Crossref | GoogleScholarGoogle Scholar |
Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197–242.
| Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods.Crossref | GoogleScholarGoogle Scholar |
Campana, S. E., Annand, M. C., and McMillan, J. I. (1995). Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society 124, 131–138.
| Graphical and statistical methods for determining the consistency of age determinations.Crossref | GoogleScholarGoogle Scholar |
Carlson, J. K., and Baremore, I. E. (2003). Changes in biological parameters of Atlantic sharpnose shark Rhizoprionodon terraenovae in the Gulf of Mexico: evidence for density-dependent growth and maturity? Marine and Freshwater Research 54, 227–234.
| Changes in biological parameters of Atlantic sharpnose shark Rhizoprionodon terraenovae in the Gulf of Mexico: evidence for density-dependent growth and maturity?Crossref | GoogleScholarGoogle Scholar |
Castillo-Géniz, J. L., Márquez-Faria, J. F., Rodriguez de la Cruz, M. C., Cortés, E., and Cid del Prado, A. (1998). The Mexican artisanal shark fishery in the Gulf of Mexico: towards a regulated fishery. Marine and Freshwater Research 49, 611–620.
| The Mexican artisanal shark fishery in the Gulf of Mexico: towards a regulated fishery.Crossref | GoogleScholarGoogle Scholar |
Chang, W. Y. B. (1982). A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39, 1208–1210.
| A statistical method for evaluating the reproducibility of age determination.Crossref | GoogleScholarGoogle Scholar |
Compagno, L. J. V. (1984). ‘FAO Species Catalogue. Vol. 4. Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species Known to Date. Part 2. Carcharhiniformes.’ (Food and Agriculture Organization of the United Nations: Rome, Italy.)
Conrath, C. L., Gelsleichter, J., and Musick, J. A. (2002). Age and growth of the smooth dogfish (Mustelus canis) in the northwest Atlantic Ocean. Fishery Bulletin 100, 674–682.
Corsso, J. T., Gadig, O. B. F., Barreto, R. R. P., and Motta, F. S. (2018). Condition analysis of the Brazilian sharpnose shark Rhizoprionodon lalandii: evidence of maternal investment for initial post-natal life. Journal of Fish Biology 93, 1038–1045.
| Condition analysis of the Brazilian sharpnose shark Rhizoprionodon lalandii: evidence of maternal investment for initial post-natal life.Crossref | GoogleScholarGoogle Scholar | 30120771PubMed |
Cortés, E. (1995). Demographic analysis of the Atlantic sharpnose shark, Rhizoprionodon terraenovae, in the Gulf of Mexico. Fishery Bulletin 93, 57–66.
Cortés, E. (2000). Life history patterns and correlations in sharks. Reviews in Fisheries Science 8, 299–344.
| Life history patterns and correlations in sharks.Crossref | GoogleScholarGoogle Scholar |
Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., Carlson, J. K., Davidson, L. N. K., Fordham, S. V., Francis, M. P., Pollock, C. M., Simpfendorfer, C. A., Burgess, G. H., Carpenter, K. E., Compagno, L. J. V., Ebert, D. A., Gibson, C., Heupel, M. R., Livingstone, S. R., Sanciangco, J. C., Stevens, J. D., Valenti, S., and White, W. T. (2014). Extinction risk and conservation of the world’s sharks and rays. eLife 3, e00590.
| Extinction risk and conservation of the world’s sharks and rays.Crossref | GoogleScholarGoogle Scholar | 24448405PubMed |
Ebert, D. A., Fowler, S., and Compagno, L. J. V. (2013). ‘Sharks of the World. A Fully Illustrated Guide.’ (Wild Nature Press: Plymouth, UK)
Ferreira, B. P. (1988). Ciclo reprodutivo de Rhizoprionodon lalandii (Valenciennes) e Rhizoprionodon porosus (Poey) (Selachii, Carcharhinidae) na região de Barra de Guaratiba, RJ. Anais da Academia Brasileira de Ciências 60, 91–101.
Gadig, O. B. F., Motta, F. S., and Namora, R. C. (2002). Projeto Cação: a study on small coastal sharks in São Paulo Southeast Brazil. In ‘Proceedings of the International Conference on Sustainable Management of Coastal Ecosystems’, 3–5 November 1999, Porto, Portugal. (Ed. P. Duarte.) pp. 239–246. (Fundação Fernando Pessoa: Porto, Portugal.)
Geraghty, P. T., Macbeth, W. G., Harry, A. V., Bell, J. E., Yerman, M. N., and Williamson, J. E. (2014). Age and growth parameters for three heavily exploited shark species off temperate eastern Australia. ICES Journal of Marine Science 71, 559–573.
| Age and growth parameters for three heavily exploited shark species off temperate eastern Australia.Crossref | GoogleScholarGoogle Scholar |
Goldman, K. J. (2004). Age and growth of elasmobranch fishes. In ‘Elasmobranch Fisheries Management Techniques’. (Eds J. A. Musick and R. Bonfil.) pp. 97–132. (APEC Fisheries Working Group: Singapore.)
Goldman, K. J., Cailliet, G. M., Andrews, A. H., and Natanson, L. J. (2012). Assessing the age and growth of chondrichthyan fishes. In ‘Biology of Sharks and Their Relatives’. (Eds J. C. Carrier, J. A. Musick, and M. R. Heithaus.) pp. 423–451. (CRC Press: Boca Raton: FL, USA.)
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 115, 513–583.
| On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies.Crossref | GoogleScholarGoogle Scholar |
Harry, A. V., Simpfendorfer, C. A., and Tobin, A. J. (2010). Improving age, growth and maturity estimates for aseasonally reproducing chondrichthyans. Fisheries Research 106, 393–403.
| Improving age, growth and maturity estimates for aseasonally reproducing chondrichthyans.Crossref | GoogleScholarGoogle Scholar |
Harry, A. V., Tobin, A. J., and Simpfendorfer, C. A. (2013). Age, growth and reproductive biology of the spot-tail shark, Carcharhinus sorrah, and the Australian blacktip shark, C. tilstoni, from the Great Barrier Reef World Heritage Area, north-eastern Australia. Marine and Freshwater Research 64, 277–293.
| Age, growth and reproductive biology of the spot-tail shark, Carcharhinus sorrah, and the Australian blacktip shark, C. tilstoni, from the Great Barrier Reef World Heritage Area, north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |
Hoenig, J. M., Morgan, M. J., and Brown, C. A. (1995). Analysing differences between two age determination methods by tests of symmetry. Canadian Journal of Fisheries and Aquatic Sciences 52, 364–368.
| Analysing differences between two age determination methods by tests of symmetry.Crossref | GoogleScholarGoogle Scholar |
Instituto Chico Mendes de Conservação da Biodiversidade (2018). Brazil red book of threatened species of fauna. Available at https://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol1.pdf [Verified 6 August 2020].
Kimura, D. K. (1980). Likelihood methods for the von Bertalanffy growth curve. Fishery Bulletin 79, 95–101.
Krishnamoorthi, B., and Jagadis, I. (1986). Biology and population dynamics of the grey dogshark, Rhizoprionodon acutus (Ruppel), in Madras waters. Indian Journal of Fisheries 33, 371–385.
Lessa, R., Quijano, S. M., Santana, F. M., and Monzini, J. (2006). Caribbean sharpnose shark Rhizoprionodon porosus. In ‘The IUCN Red List of Threatened Species 2006’. e.T61407A12473033. (International Union for Conservation of Nature and Natural Resources.) Available at https://www.iucnredlist.org/species/61407/12473033 [Verified 6 August 2020].
Lessa, R., Santana, F. M., and Almeida, Z. S. (2009). Age and growth of the Brazilian sharpnose shark, Rhizoprionodon lalandii and Caribean sharpnose shark, R. porosus (Elasmobranchii, Carcharhinidae) on the northern coast of Brazil (Maranhão). Pan-American Journal of Aquatic Sciences 4, 532–544.
Loefer, J. K., and Sedberry, G. R. (2003). Life history of the Atlantic sharpnose shark (Rhizoprionodon terraenovae) (Richardson, 1836) off the southeastern United States. Fishery Bulletin 101, 75–88.
Lucena, L. R. R., and Lessa, R. P. T. (2019). Shape and cluster analysis for different detecter patterns of Rhizoprionodon porosus in northeast coast of Brazil. Revista Brasileira de Biometria 37, 258–271.
| Shape and cluster analysis for different detecter patterns of Rhizoprionodon porosus in northeast coast of Brazil.Crossref | GoogleScholarGoogle Scholar |
Márquez-Farias, J. F., and Castillo-Geniz, J. L. (1998). Fishery biology and demography of the Atlantic sharpnose shark, Rhizoprionodon terraenovae, in the southern Gulf of Mexico. Fisheries Research 39, 183–198.
| Fishery biology and demography of the Atlantic sharpnose shark, Rhizoprionodon terraenovae, in the southern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |
Mattos, S. M. G., and Pereira, J. A. (2002). Parâmetros de crescimento do tubarão rabo-seco, Rhizoprionodon porosus (Poey, 1861), no litoral do Estado de Pernambuco, Brasil. Arquivos de Ciências do Mar 35, 57–66.
Mendonça, F. F., Oliveira, C., Gadig, O. B. F., and Foresti, F. (2011). Phylogeography and genetic population structure of Caribbean sharpnose shark Rhizoprionodon porosus. Reviews in Fish Biology and Fisheries 21, 799–814.
| Phylogeography and genetic population structure of Caribbean sharpnose shark Rhizoprionodon porosus.Crossref | GoogleScholarGoogle Scholar |
Mendonça, F. F., Oliveira, C., Gadig, O. B. F., and Foresti, F. (2013). Diversity and genetic population structure of the Brazilian sharpnose shark Rhizoprionodon lalandii. Aquatic Conservation 23, 850–857.
| Diversity and genetic population structure of the Brazilian sharpnose shark Rhizoprionodon lalandii.Crossref | GoogleScholarGoogle Scholar |
Mildenberger, T. K., Taylor, M. H., and Wolff, M. (2017). TropFishR: an R package for fisheries analysis with length–frequency data. Methods in Ecology and Evolution 8, 1520–1527.
| TropFishR: an R package for fisheries analysis with length–frequency data.Crossref | GoogleScholarGoogle Scholar |
Motta, F. S., Gadig, O. B. F., Namora, R. C., and Braga, F. M. S. (2005). Size and sex compositions, length–weight relationship, and occurrence of the Brazilian sharpnose shark, Rhizoprionodon lalandii, caught by artisanal fishery from southeastern Brazil. Fisheries Research 74, 116–126.
| Size and sex compositions, length–weight relationship, and occurrence of the Brazilian sharpnose shark, Rhizoprionodon lalandii, caught by artisanal fishery from southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |
Motta, F. S., Namora, R. C., Gadig, O. B. F., and Braga, F. M. S. (2007). Reproductive biology of the Brazilian sharpnose shark (Rhizoprionodon lalandii) from southastern Brazil. ICES Journal of Marine Science 64, 1829–1835.
| Reproductive biology of the Brazilian sharpnose shark (Rhizoprionodon lalandii) from southastern Brazil.Crossref | GoogleScholarGoogle Scholar |
Motta, F. S., Rosa, M. R., Namora, R. C., and Gadig, O. B. F. (2014). Bony fishes (Teleostei) caught by small-scale fisheries off central to south coast of São Paulo State, Southeastern Brazil. Biota Neotropica 14, 1–7.
| Bony fishes (Teleostei) caught by small-scale fisheries off central to south coast of São Paulo State, Southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |
Musick, J. A. (1999). Criteria to define extinction risk in marine fishes. Fisheries (Bethesda, Md.) 24, 6–14.
| Criteria to define extinction risk in marine fishes.Crossref | GoogleScholarGoogle Scholar |
Namora, R. C., Motta, F. S., and Gadig, O. B. F. (2009). Characterization of small-scale fisheries on Fishermen’s Beach, Itanhaém County, middle-southern São Paulo State. Arquivos de Ciências do Mar 42, 60–67.
Natanson, L. J., Casey, J. G., and Konler, N. E. (1995). Age and growth estimates for the dusky shark, Carcharhinus obscurus, in the western North Atlantic Ocean. Fishery Bulletin 93, 116–126.
Natanson, L. J., Kohler, N. E., Ardizzone, D., Cailliet, G. M., Wintner, S. P., and Mollet, H. F. (2006). Validated age and growth estimates for the shortfin mako, Isurus oxyrinchus, in the North Atlantic Ocean. Environmental Biology of Fishes 77, 367–383.
| Validated age and growth estimates for the shortfin mako, Isurus oxyrinchus, in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |
Natanson, L. J., Adams, D. H., Winton, M. V., and Maurer, J. R. (2014). Age and growth of the bull shark in the western North Atlantic Ocean. Transactions of the American Fisheries Society 143, 732–743.
| Age and growth of the bull shark in the western North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |
Ogle, D. H. (2016). ‘Introductory Fisheries Analyses with R.’ (Chapman & Hall/CRC: Boca Raton, FL, USA.)
Pardo, S. A., Cooper, A. B., and Dulvy, N. K. (2013). Avoiding fishy growth curves. Methods in Ecology and Evolution 4, 353–360.
| Avoiding fishy growth curves.Crossref | GoogleScholarGoogle Scholar |
Parsons, G. R. (1983). The reproductive biology of the Atlantic sharpnose shark, Rhizoprionodon terraenovae (Richardson). Fishery Bulletin 81, 61–73.
Parsons, G. R. (1985). Growth and age estimation of the Atlantic Sharpnose Shark, Rhizoprionodon terraenovae: a comparison of techniques. Copeia 1985, 80–85.
| Growth and age estimation of the Atlantic Sharpnose Shark, Rhizoprionodon terraenovae: a comparison of techniques.Crossref | GoogleScholarGoogle Scholar |
Ricker, W. E. (1979). Growth rates and models. In ‘Fish Physiology Vol. VIII: Bioenergetics and Growth’. (Eds W. S. Hoar, D. J. Randall, and J. R. Brett.) pp. 677–743. (Academic Press: New York, NY, USA.)
Rosa, R. S., Gadig, O. B. F., Santos Motta, F., and Namora, R. C. (2004). Brazilian sharpnose shark Rhizoprionodon lalandii. In ‘The IUCN Red List of Threatened Species 2004’. e.T44666A10922264. (International Union for Conservation of Nature and Natural Resources.) Available at https://www.iucnredlist.org/species/44666/10922264 [Verified 11 August 2020].
Rountree, R. A., and Able, K. W. (1996). Seasonal abundance, growth and foranging habitats of juvenile smooth dogfish, Mustelus canis, in a New Jersey estuary. Fishery Bulletin 94, 522–534.
Simpfendorfer, C. L. (1993). Age and growth of the Australian sharpnose shark, Rhizoprionodon taylori, from north Queensland, Australia. Environmental Biology of Fishes 36, 233–241.
| Age and growth of the Australian sharpnose shark, Rhizoprionodon taylori, from north Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |
Simpfendorfer, C. A. (1999). Mortality estimates and demographic analysis for the Australian sharpnose shark, Rhizoprionodon taylori, from northern Australia. Fishery Bulletin 97, 978–986.
Smart, J. J., Chin, A., Tobin, A. J., and Simpfendorfer, C. A. (2016). Multimodel approaches in shark and ray growth studies: strengths, weaknesses and the future. Fish and Fisheries 17, 955–971.
| Multimodel approaches in shark and ray growth studies: strengths, weaknesses and the future.Crossref | GoogleScholarGoogle Scholar |
Smith, S. E., Au, D. W., and Show, C. (1998). Intrinsic rebound potentials of 26 species of Pacific sharks. Marine and Freshwater Research 49, 663–678.
| Intrinsic rebound potentials of 26 species of Pacific sharks.Crossref | GoogleScholarGoogle Scholar |
Smith, W. D., Cailliet, G. M., and Melendez, E. M. (2007). Maturity and growth characteristics of a commercially exploited stingray, Dasyatis dipterura. Marine and Freshwater Research 58, 54–66.
| Maturity and growth characteristics of a commercially exploited stingray, Dasyatis dipterura.Crossref | GoogleScholarGoogle Scholar |
Sokal, R. R., and Rohlf, F. J. (1995). ‘Biometry: The Principles and Practice of Statistics in Biological Research’, 3nd edn. (W. H. Freeman and Co.: New York, NY, USA.)
Sparre, P., Ursin, E., and Venema, S. C. (1989). ‘Introduction to Tropical Fish Stock Assessment – Part 1: Manual.’ (Food and Agriculture Organization of the United Nations: Rome, Italy.)
Thorson, J. T., and Simpfendorfer, C. A. (2009). Gear selectivity and sample size effects on growth curve selection in shark age and growth studies. Fisheries Research 98, 75–84.
| Gear selectivity and sample size effects on growth curve selection in shark age and growth studies.Crossref | GoogleScholarGoogle Scholar |
von Bertalanffy, L. (1934). Untersuchungen ueber die Gesetzlichkeit des Wachstums. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen 131, 613–652.
| Untersuchungen ueber die Gesetzlichkeit des Wachstums.Crossref | GoogleScholarGoogle Scholar | 28353935PubMed |
Wang, Y.-G., Thomas, M. R., and Somers, I. F. (1995). A maximum likelihood approach for estimating growth from tag–recapture data. Canadian Journal of Fisheries and Aquatic Sciences 52, 252–259.
| A maximum likelihood approach for estimating growth from tag–recapture data.Crossref | GoogleScholarGoogle Scholar |