Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Recurrent coral bleaching in north-western Australia and associated declines in coral cover

R. C. Babcock https://orcid.org/0000-0002-7756-1290 A E I J , D. P. Thomson B , M. D. E. Haywood A , M. A. Vanderklift B , R. Pillans A , W. A. Rochester A , M. Miller A , C. W. Speed C , G. Shedrawi D I , S. Field D , R. Evans D E , J. Stoddart F , T. J. Hurley G , A. Thompson H , J. Gilmour C E and M. Depczynski C E
+ Author Affiliations
- Author Affiliations

A CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, 306 Carmody Road, Saint Lucia, Qld 4072, Australia.

B CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, 64 Fairway, The University of Western Australia, Crawley, WA 6009, Australia.

C Australian Institute of Marine Science, Indian Ocean Marine Research Centre, 64 Fairway, The University of Western Australia, Crawley, WA 6009, Australia.

D Department of Biodiversity, Conservation, and Attractions, 17 Dick Perry Ave, Kensington, WA 6151, Australia.

E Oceans Institute and School of Biological Sciences, 64 Fairway, The University of Western Australia, Crawley, WA 6009, Australia.

F MScience, Mount Lawley, WA 6929, Australia.

G O2 Marine, 11 Mews Road, Fremantle, WA 6160, Australia.

H Australian Institute of Marine Science, PMB No. 3, Townsville, Qld 4810, Australia.

I Pacific Community, Promenade Roger Laroque, Noumea 98800, New Caledonia.

J Corresponding author. Email: russ.babcock@csiro.au

Marine and Freshwater Research 72(5) 620-632 https://doi.org/10.1071/MF19378
Submitted: 4 April 2020  Accepted: 31 August 2020   Published: 20 November 2020

Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND

Abstract

Coral reefs have been heavily affected by elevated sea-surface temperature (SST) and coral bleaching since the late 1980s; however, until recently coastal reefs of north-western Australia have been relatively unaffected compared to Timor Sea and eastern Australian reefs. We compare SST time series with changes in coral cover spanning a period of up to 36 years to describe temporal and spatial variability in bleaching and associated coral mortality throughout the Pilbara–Ningaloo region. Declines in coral cover ranged from 12.5 to 51.3%, with relative declines ranging from 38 to 92%. Since 2013, coral cover throughout the region has declined to historically low levels at four of five subregions, with impaired recovery occurring at two subregions. Observations are consistent with global trends of repeated severe heat waves, coral bleaching and acute declines in coral cover. Locations within this study region have already experienced multiple coral-bleaching events within a period of less than 5 years. There is a high likelihood that reefs in the western Pilbara and northern Ningaloo regions will experience more frequent marine heatwaves, coral bleaching and mortality events in the future. Action, therefore, needs to be taken now to support the resilience of coral reef ecosystems in the region, which is arguably the most important coral-reef province on Australia’s western coast.

Keywords: climate change, coral bleaching, coral reef, cyclones, recovery, temperature variation.


References

Anthony, K., Bay, L. K., Costanza, R., Firn, J., Gunn, J., Harrison, P., Heyward, A., Lundgren, P., Mead, D., Moore, T., Mumby, P. J., van Oppen, M. J. H., Robertson, J., Runge, M. C., Suggett, D., Schaffelke, B., Wachenfeld, D., and Walshe, T. (2017). New interventions are needed to save coral reefs. Nature Ecology & Evolution 1, 1420–1422.
New interventions are needed to save coral reefs.Crossref | GoogleScholarGoogle Scholar |

Babcock, R. C., Bustamante, R., Fulton, E., Fulton, D., Haywood, M. D. E., Hobday, A. J., Kenyon, R., Matear, R. J., Plagányi, E. E., Richardson, A. J., and Vanderklift, M. (2019). Severe and extensive climate change impacts are happening now: recent dieback of marine habitat forming communities along 40% of a continental coast. Frontiers in Marine Science 6, 411.
Severe and extensive climate change impacts are happening now: recent dieback of marine habitat forming communities along 40% of a continental coast.Crossref | GoogleScholarGoogle Scholar |

Baker, A. C., Glynn, P. W., and Riegl, B. (2008). Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science 80, 435–471.
Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook.Crossref | GoogleScholarGoogle Scholar |

Binks, R. M., Byrne, M., McMahon, K., Pitt, G., Murry, K., and Evans, R. D. (2019). Mangrove connectivity in northwestern Australia: using seascape genetics to determine the potential for recovery and resilience. Diversity and Distributions 25, 298–309.
Mangrove connectivity in northwestern Australia: using seascape genetics to determine the potential for recovery and resilience.Crossref | GoogleScholarGoogle Scholar |

Boschetti, F., Babcock, R. C., Doropoulos, C., Thomson, D. P., Feng, M., Slawinski, D., Berry, O., and Vanderklift, M. A. (2017). Setting priorities for conservation initiatives at the interface between ocean circulation, larval connectivity, and population dynamics. In ‘Pilbara Marine Conservation Partnership: final report, Vol. 1’. (Eds R. C. Babcock, A. Donovan, S. Collin, C. Ochieng-Erftemeier.) pp. 249–272. (CSIRO: Brisbane, Qld, Australia.)

Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change 4, 111–116.
Increasing frequency of extreme El Niño events due to greenhouse warming.Crossref | GoogleScholarGoogle Scholar |

Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F.-F., Timmermann, A., Collins, M., Vecchi, G., Lengaigne, M., England, M. H., Dommenget, D., Takahashi, K., and Guilyardi, E. (2015). Increased frequency of extreme La Niña events under greenhouse warming. Nature Climate Change 5, 132–137.
Increased frequency of extreme La Niña events under greenhouse warming.Crossref | GoogleScholarGoogle Scholar |

Carilli, J., Donner, S. D., and Hartmann, A. C. (2012). Historical temperature variability affects coral response to heat stress. PLoS One 7, e34418.
Historical temperature variability affects coral response to heat stress.Crossref | GoogleScholarGoogle Scholar | 22479626PubMed |

De’ath, G., Fabricius, K. E., Sweatman, H., and Puotinen, M. (2012). The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences 109, 17995–17999.

Depczynski, M., Gilmour, J. P., Ridgway, T., Barnes, H., Heyward, A. J., Holmes, T. H., Moore, J. A. Y., Radford, B. T., Thomson, D. P., Tinkler, P., and Wilson, S. K. (2013). Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs 32, 233–238.
Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef.Crossref | GoogleScholarGoogle Scholar |

DiBattista, J. D., Travers, M. J., Moore, G. I., Evans, R. D., Newman, S. J., Feng, M., Moyle, S. D., Gorton, R. J., Saunders, T., and Berry, O. (2017). Seascape genomics reveals fine‐scale patterns of dispersal for a reef fish along the ecologically divergent coast of northwestern Australia. Molecular Ecology 26, 6206–6223.
Seascape genomics reveals fine‐scale patterns of dispersal for a reef fish along the ecologically divergent coast of northwestern Australia.Crossref | GoogleScholarGoogle Scholar | 29080323PubMed |

Doi, T., Behera, S. K., and Yamagata, T. (2013). Predictability of the Ningaloo Niño/Niña. Scientific Reports 3, 2892.
Predictability of the Ningaloo Niño/Niña.Crossref | GoogleScholarGoogle Scholar | 24100593PubMed |

Evans, R. D., Ryan, N. M., Travers, M. J., Feng, M., Hitchen, Y., and Kennington, W. J. (2019). A seascape genetic analysis of stress-tolerant coral species along the Western Australian coast. Coral Reefs 38, 63–78.
A seascape genetic analysis of stress-tolerant coral species along the Western Australian coast.Crossref | GoogleScholarGoogle Scholar |

Feng, M., Hendon, H. H., Xie, S. P., Marshall, A. G., Schiller, A., Kosaka, Y., Caputi, N., and Pearce, A. (2015). Decadal increase in Ningaloo Niño since the late 1990s. Geophysical Research Letters 42, 104–112.

Feng, M., Colberg, F., Slawinski, D., Berry, O., and Babcock, R. (2016). Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia. Journal of Marine Systems 164, 1–12.
Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia.Crossref | GoogleScholarGoogle Scholar |

Garde, L. A., Spillman, C. M., Heron, S. F., and Beeden, R. J. (2014). Reef temp next generation: a new operational system for monitoring reef thermal stress. Journal of Operational Oceanography 7, 21–33.
Reef temp next generation: a new operational system for monitoring reef thermal stress.Crossref | GoogleScholarGoogle Scholar |

GBRMPA (2017). Great Barrier Reef Marine Park Authority reef health update June 2017. Available at http://www.gbrmpa.gov.au/about-the-reef/reef-health (verified 25 October 2018).

Gilmour, J. P. (2004). Size-structures of populations of the mushroom coral Fungia fungites: the role of disturbance. Coral Reefs 23, 493–504.
Size-structures of populations of the mushroom coral Fungia fungites: the role of disturbance.Crossref | GoogleScholarGoogle Scholar |

Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H., and Pratchett, M. S. (2013). Disturbance and recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71.
Disturbance and recovery of an isolated coral reef system following severe disturbance.Crossref | GoogleScholarGoogle Scholar | 23559247PubMed |

Glynn, P. W., Maté, J. L., Baker, A. C., and Calderón, M. O. (2001). Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño–Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bulletin of Marine Science 69, 79–109.

Goreau, T. J., McClanahan, T., Hayes, R., and Strong, A. E. (2000). Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology 14, 5–15.
Conservation of coral reefs after the 1998 global bleaching event.Crossref | GoogleScholarGoogle Scholar |

Graham, N. A. (2014). Habitat complexity: coral structural loss leads to fisheries declines. Current Biology 24, R359–R361.
| 24801184PubMed |

Graham, N. A., Cinner, J. E., Norström, A. V., and Nyström, M. (2014). Coral reefs as novel ecosystems: embracing new futures. Current Opinion in Environmental Sustainability 7, 9–14.

Guest, J. R., Baird, A. H., Maynard, J. A., Muttaqin, E., Edwards, A. J., Campbell, S. J., Yewdall, K., Affendi, Y. A., and Chou, L. M. (2012). Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7, e33353.
Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress.Crossref | GoogleScholarGoogle Scholar | 22428027PubMed |

Han, W., Meehl, G. A., Hu, A., Alexander, M. A., Yamagata, T., Yuan, D., Ishii, M., Pegion, P., Zheng, J., Hamlington, B. D., and Quan, X. W. (2014). Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dynamics 43, 1357–1379.
Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades.Crossref | GoogleScholarGoogle Scholar |

Haywood, M. D. E., Thomson, D. P., Babcock, R. C., Pillans, R. D., Keesing, J. K., Vanderklift, M. A., Miller, M., Rochester, W. A., Donovan, A., Evans, R. D., Shedrawi, G., and Field, S. N. (2019). Crown-of-thorns starfish impede recovery of coral reefs following bleaching. Marine Biology 166, 99.
Crown-of-thorns starfish impede recovery of coral reefs following bleaching.Crossref | GoogleScholarGoogle Scholar |

Heron, S. F., Eakin, C. M., Douvere, F., Anderson, K., Day, J. C., Geiger, E., Hoegh-Guldberg, O., van Hooidonk, R., Hughes, T., Marshall, P., and Obura, D. (2017). ‘Impacts of Climate Change on World Heritage Coral Reefs: A First Global Scientific Assessment.’ (UNESCO World Heritage Centre: Paris, France.)

Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research 50, 839–866.
Climate change, coral bleaching and the future of the world’s coral reefs.Crossref | GoogleScholarGoogle Scholar |

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., and Knowlton, N. (2007). Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742.
Coral reefs under rapid climate change and ocean acidification.Crossref | GoogleScholarGoogle Scholar | 18079392PubMed |

Hoegh-Guldberg, O., Cai, R., Poloczanska, E., Brewer, P., Sundby, S., Hilmi, K., and Jung, S. (2014). The ocean. In ‘Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Inter-governmental Panel on Climate Change’. (Eds V. Barros, C. Field, D. Dokken, M. Mastrandrea, K. Mach, T. Bilir, M. Chatterjee, K. Ebi, Y. Estrada, R. Genova, B. Girma, E. Kissel, A. Levy, S. MacCracken, P. Mastrandrea, and L. White.) pp. 1655–1731. (Cambridge University Press: Cambridge, UK and New York, NY, USA.)

Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., and Bridge, T. C. (2017). Global warming and recurrent mass bleaching of corals. Nature 543, 373–377.
Global warming and recurrent mass bleaching of corals.Crossref | GoogleScholarGoogle Scholar | 28300113PubMed |

Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., Liu, G., and McWilliam, M. J. (2018). Global warming transforms coral reef assemblages. Nature 556, 492.
Global warming transforms coral reef assemblages.Crossref | GoogleScholarGoogle Scholar | 29670282PubMed |

Lafratta, A., Fromont, J., Speare, P., and Schönberg, C. H. L. (2017). Coral bleaching in turbid waters of north-western Australia. Marine and Freshwater Research 68, 65–75.
Coral bleaching in turbid waters of north-western Australia.Crossref | GoogleScholarGoogle Scholar |

Langlais, C. E., Lenton, A., Heron, S. F., Evenhuis, C., Sen Gupta, A., Brown, J. N., and Kuchinke, M. (2017). Coral bleaching pathways under the control of regional temperature variability. Nature Climate Change , .
Coral bleaching pathways under the control of regional temperature variability.Crossref | GoogleScholarGoogle Scholar |

Liu, G., Strong, A. E., Skirving, W., and Arzayus, L. F. (2006). Overview of NOAA coral reef watch program’s near-real time satellite global coral bleaching monitoring activities. In ‘Proceedings of the 10th International Coral Reef Symposium’. pp. 1783-1793.

Liu, G., Matrosova, L. E., Penland, C., Gledhill, D. K., Eakin, C. M., Webb, R. S., Christensen, T. R. L., Heron, S. F., Morgan, J. A., Skirving, W. J., and Strong, A. E. (2008). NOAA Coral Reef Watch coral bleaching outlook system. In ‘Proceedings of the 11th International Coral Reef Symposium’. Ft. Lauderdale, FL, USA. pp. 951–955.

Moore, J. A. Y., Bellchambers, L. M., Depczynski, M. R., Evans, R. D., Evans, S. N., Field, S. N., Friedman, K. J., Gilmour, J. P., Holmes, T. H., Middlebrook, R., Radford, B. T., Ridgway, T., Shedrawi, G., Taylor, H., Thomson, D. P., and Wilson, S. K. (2012). Unprecedented mass bleaching and loss of coral across 12° of latitude in Western Australia in 2010–11. PLoS One 7, e51807.
Unprecedented mass bleaching and loss of coral across 12° of latitude in Western Australia in 2010–11.Crossref | GoogleScholarGoogle Scholar |

MScience (2007). ‘Pluto LNG Development: Coral Health Monitoring: Baseline.’ (MScience: Perth, WA, Australia.)

MScience (2008). ‘Bleaching Patterns Across the Pilbara in Early 2008.’ (MScience: Perth, WA, Australia.)

Oliver, J. K., Berkelmans, R., and Eakin, C. M. (2009). Coral bleaching in space and time. In ‘Coral Bleaching: Patterns, Process, Causes and Consequences’. (Eds M. J. H. van Oppen and J. M. Lough.) pp. 21–39. (Springer-Verlag: Berlin, Germany.) http://dx.doi.org/10.1007/978-3-540-69775-6_3

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Straub, S. C., and Wernberg, T. (2018). Ocean warming brings longer and more frequent marine heatwaves. Nature Communications 9, 1324.
Ocean warming brings longer and more frequent marine heatwaves.Crossref | GoogleScholarGoogle Scholar |

Osborne, K., Thompson, A. A., Cheal, A. J., Emslie, M. J., Johns, K. A., Jonker, M. J., Logan, M., Miller, I. R., and Sweatman, H. (2017). Delayed coral recovery in a warming ocean. Global Change Biology 23, 3869–3881.
Delayed coral recovery in a warming ocean.Crossref | GoogleScholarGoogle Scholar | 28485822PubMed |

Perry, C. T., and Morgan, K. M. (2017a). Post-bleaching coral community change on southern Maldivian reefs: is there potential for rapid recovery?. Coral Reefs 36, 1189–1194.

Perry, C. T., and Morgan, K. M. (2017b). Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Scientific Reports 7, 40581.
| 28084450PubMed |

Przeslawski, R., Ahyong, S., Byrne, M., Woerheide, G., and Hutchings, P. A. T. (2008). Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biology 14, 2773–2795.

Pratchett, M. S., Munday, P. L., Wilson, S. K., Graham, N. A. J., Cinner, J. E., Bellwood, D. R., Jones, G. P., Polunin, N. V. C., and McClanahan, T. R. (2008). Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanography and Marine Biology – An Annual Review 46, 251–296.
Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences.Crossref | GoogleScholarGoogle Scholar |

Ridgway, T., Inostroza, K., Synnot, L., Trapon, M., Twomey, L., and Westera, M. (2016). Temporal patterns of coral cover in the offshore Pilbara, Western Australia. Marine Biology 163, 182.

Sharma, S., Swayne, D. A., and Obimbo, C. (2016). Trend analysis and change point techniques: a survey. Energy, Ecology and Environment 1, 123–130.

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature 413, 591.
Catastrophic shifts in ecosystems.Crossref | GoogleScholarGoogle Scholar | 11595939PubMed |

Schindler, D. E., and Hilborn, R. (2015). Prediction, precaution, and policy under global change. Science 347, 953–954.
Prediction, precaution, and policy under global change.Crossref | GoogleScholarGoogle Scholar | 25722401PubMed |

Schoepf, V., Jung, M. U., McCulloch, M. T., White, N. E., Stat, M., and Thomas, L. (2020). Thermally variable, macrotidal reef habitats promote rapid recovery from mass coral bleaching. Frontiers in Marine Science 7, 245.

Shedrawi, G., Falter, J. L., Friedman, K. J., Lowe, R. J., Pratchett, M. S., Simpson, C. J., Speed, C. W., Wilson, S. K., and Zhang, Z. (2017). Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances. Coral Reefs 36, 861–872.
Localised hydrodynamics influence vulnerability of coral communities to environmental disturbances.Crossref | GoogleScholarGoogle Scholar |

Skewes, T.D., Gordon, S.R., McLeod, I.R., Taranto, T.J., Dennis, D.M., Jacobs, D.R., Pitcher, C.R., Haywood, M.D.E., Smith, G.P., Poiner, I.R., Milton, D. (1999). Survey and Stock Estimates of the Shallow Reef (0–15 m deep) and Shoal Area (15–50 m deep) Sedentary Marine Resources and Habitat Mapping within the Timor Sea MOU74 Box. Vol. 2: Habitat Mapping and Coral Dieback. Client FRRF, CSIRO, Cleveland.

Smith, D. J., Suggett, D. J., and Baker, N. R. (2005). Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Global Change Biology 11, 1–11.

Speed, C. W., Babcock, R. C., Bancroft, K. P., Beckley, L. E., Bellchambers, L. M., Depczynski, M., Stuart, N., Field, S. N., Friedman, K. J., Gilmour, J. P., Hobbs, J. P. A., Kobryn, H. T., Moore, J. A. Y., Nutt, C. D., Shedrawi, G., Thomson, D. P., and Wilson, S. K. (2013). Dynamic stability of coral reefs on the West Australian coast. PLoS One 8, e69863.
Dynamic stability of coral reefs on the West Australian coast.Crossref | GoogleScholarGoogle Scholar | 24146968PubMed |

Taylor, W. A. (2000). Change-point analysis: a powerful new tool for detecting changes. Available at http://www.variation.com/cpa/tech/changepoint.html (verified 29 September 2010).

Thomson, D. P., Babcock, R. C., Haywood, M. D. E., Pillans, R., Vanderklift, M. A., and Boschetti, F. (2017). 10-year declines in Acropora and Turbinaria corals and a shift toward more generalist life-history traits at northern Ningaloo Reef, Western Australia. In ‘Pilbara Marine Conservation Partnership: Final Report, Vol. 2’. (Eds R. C. Babcock, A. Donovan, S. Collin, and C. Ochieng-Erftemeier.) pp. 492–509. (CSIRO: Brisbane, Qld, Australia.)

Trapon, M. L., Pratchett, M. S., and Penin, L. (2011). Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. Journal of Marine Biology 2011, 807625.
Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia.Crossref | GoogleScholarGoogle Scholar |

van de Pol, M., Jenouvrier, S., Cornelissen, J. H., and Visser, M. E. (2017). Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 372, 20160134.
Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions.Crossref | GoogleScholarGoogle Scholar | 28483869PubMed |

Veron, J. J., and Marsh, L. (1988). Hermatypic corals of Western Australia. Records and annotated species list. Supplement. Records of the Western Australian Museum 29, 1–136.

Wernberg, T., Bennett, S., Babcock, R. C., de Bettignies, T., Cure, K., Depczynski, M., Dufois, F., Fromont, J., Fulton, C. J., Hovey, R. K., Harvey, E. S., Holmes, T., Kendrick, G. A., Radford, B., Santana-Garcon, J., Saunders, B. J., Smale, D. A., Thomsen, M. S., Tuckett, C. A., Tuya, F., Vanderklift, M. A., and Wilson, S. (2016). Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172.
| 27387951PubMed |

Wilkinson, C. (2000). ‘Status of Coral Reefs of the World: 2000.’ (Australian Institute of Marine Science: Townsville, Qld, Australia.)

Xu, J., Lowe, R. J., Ivey, G. N., Jones, N. L., and Brinkman, R. (2015). Observations of the shelf circulation dynamics along Ningaloo Reef, Western Australia during the austral spring and summer. Continental Shelf Research 95, 54–73.
Observations of the shelf circulation dynamics along Ningaloo Reef, Western Australia during the austral spring and summer.Crossref | GoogleScholarGoogle Scholar |

Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J., and Zinke, J. (2017). Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean Scientific Reports 7, 2443.
Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian OceanCrossref | GoogleScholarGoogle Scholar | 28550298PubMed |