Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH FRONT (Open Access)

Some observations on the biogeochemical cycling of zinc in the Australian sector of the Southern Ocean: a dedication to Keith Hunter

Michael J. Ellwood A , Robert Strzepek B , Xiaoyu Chen A , Thomas W. Trull C and Philip W. Boyd B
+ Author Affiliations
- Author Affiliations

A Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia.

B Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas. 7004, Australia.

C CSIRO Oceans and Atmosphere, Hobart, Tas. 7004, Australia.

D Corresponding author. Email: michael.ellwood@anu.edu.au

Marine and Freshwater Research 71(3) 355-373 https://doi.org/10.1071/MF19200
Submitted: 30 May 2019  Accepted: 7 September 2019   Published: 3 December 2019

Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND

Abstract

In this study we investigated the distribution of dissolved and particulate zinc (dZn and pZn respectively) and its isotopes in the Subantarctic Zone as part of a Geotraces Process voyage. dZn and pZn depth profiles contrasted each other, with dZn showing depletion within the euphotic zone while pZn profiles showed enrichment. Fitting a power law equation to the pZn profiles produced an attenuation factor of 0.82, which contrasted values for particulate phosphorus, cadmium and copper. The results indicate that zinc has a longer regeneration length scale than phosphorus and cadmium, but shorter than copper. The differential regeneration of pZn relative to that of particulate phosphorus likely explains why dZn appears to have a deeper regeneration profile than that of phosphate. The dZn isotope (δ66Zndissolved) profiles collected across the Subantarctic Zone showed differing profile structures. For one station collected within an isolated cold-core eddy (CCE), δ66Zndissolved showed surface enrichment relative to deep waters. The corresponding pZn isotope profiles within the CCE did not show enrichment; rather, they were subtly depleted in surface waters and then converged to similar values at depth. Zinc isotope fractionation can be explained through a combination of fractionation processes associated with uptake by phytoplankton, zinc complexation by natural organic ligands and zinc regeneration from particulate matter.


References

Ammerman, J. W., Hood, R. R., Case, D. A., and Cotner, J. B. (2003). Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography. Eos 84, 165–170.
Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography.Crossref | GoogleScholarGoogle Scholar |

Archer, C., Andersen, M. B., Cloquet, C., Conway, T. M., Dong, S., Ellwood, M., Moore, R., Nelson, J., Rehkamper, M., Rouxel, O., Samanta, M., Shin, K.-C., Sohrin, Y., Takano, S., and Wasylenki, L. (2017). Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry 32, 415–419.
Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis.Crossref | GoogleScholarGoogle Scholar |

Armstrong, F. A. J., Stearns, C. R., and Strickland, J. D. H. (1967). The measurement of upwelling and subsequent biological process by means of the Technicon Autoanalyzer and associated equipment. Deep-Sea Research and Oceanographic Abstracts 14, 381–389.
The measurement of upwelling and subsequent biological process by means of the Technicon Autoanalyzer and associated equipment.Crossref | GoogleScholarGoogle Scholar |

Ban, Y., Aida, M., Nomura, M., and Fujii, Y. (2002). Zinc isotope separation by ligand exchange chromatography using cation exchange resin. Journal of Ion Exchange 13, 46–52.
Zinc isotope separation by ligand exchange chromatography using cation exchange resin.Crossref | GoogleScholarGoogle Scholar |

Bishop, J. K. B. (1989). Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior. In ‘Productivity of the Ocean: Present and Past’. (Eds W. H. Berger, V. S. Smetacek, and G. Wefer.) pp. 117–137. (Wiley: New York, NY, USA.)

Boyd, P., LaRoche, J., Gall, M., Frew, R., and McKay, R. M. L. (1999). Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand. Journal of Geophysical Research – Oceans 104, 13395–13408.
Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Boyd, P. W., Law, C. S., Hutchins, D. A., Abraham, E. R., Croot, P. L., Ellwood, M., Frew, R. D., Hadfield, M., Hall, J., Handy, S., Hare, C., Higgins, J., Hill, P., Hunter, K. A., LeBlanc, K., Maldonado, M. T., McKay, R. M., Mioni, C., Oliver, M., Pickmere, S., Pinkerton, M., Safi, K., Sander, S., Sanudo-Wilhelmy, S. A., Smith, M., Strzepek, R., Tovar-Sanchez, A., and Wilhelm, S. W. (2005). FeCycle: attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters. Global Biogeochemical Cycles 19, GB4S2.
FeCycle: attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters.Crossref | GoogleScholarGoogle Scholar |

Boyd, P. W., Ellwood, M. J., Tagliabue, A., and Twining, B. S. (2017). Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nature Geoscience 10, 167–173.
Biotic and abiotic retention, recycling and remineralization of metals in the ocean.Crossref | GoogleScholarGoogle Scholar |

Bruland, K. W. (1989). Complexation of zinc by natural organic ligands in the Central North Pacific. Limnology and Oceanography 34, 269–285.
Complexation of zinc by natural organic ligands in the Central North Pacific.Crossref | GoogleScholarGoogle Scholar |

Bruland, K. W., and Lohan, M. C. (2003). 6.02 – Controls of trace metals in seawater A2 – Holland, Heinrich D. In ‘Treatise on Geochemistry’. (Ed. K. K. Turekian.) pp. 23–47. (Pergamon: Oxford, UK.)

Bruland, K. W., Knauer, G. A., and Martin, J. H. (1978). Zinc in north-east Pacific water. Nature 271, 741–743.
Zinc in north-east Pacific water.Crossref | GoogleScholarGoogle Scholar |

Butler, E. C. V., O’Sullivan, J. E., Watson, R. J., Bowie, A. R., Remenyi, T. A., and Lannuzel, D. (2013). Trace metals Cd, Co, Cu, Ni, and Zn in waters of the subantarctic and Polar Frontal Zones south of Tasmania during the ‘SAZ-Sense’ project. Marine Chemistry 148, 63–76.
Trace metals Cd, Co, Cu, Ni, and Zn in waters of the subantarctic and Polar Frontal Zones south of Tasmania during the ‘SAZ-Sense’ project.Crossref | GoogleScholarGoogle Scholar |

Cloquet, C., Carignan, J., Lehmann, M., and Vanhaecke, F. (2008). Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. Analytical and Bioanalytical Chemistry 390, 451–463.
Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review.Crossref | GoogleScholarGoogle Scholar | 17952419PubMed |

de Souza, G. F., Khatiwala, S. P., Hain, M. P., Little, S. H., and Vance, D. (2018). On the origin of the marine zinc–silicon correlation. Earth and Planetary Science Letters 492, 22–34.
On the origin of the marine zinc–silicon correlation.Crossref | GoogleScholarGoogle Scholar |

Ding, X., Nomura, M., and Fujii, Y. (2010). Zinc isotope effects by chromatographic chelating exchange resin. Progress in Nuclear Energy 52, 164–167.
Zinc isotope effects by chromatographic chelating exchange resin.Crossref | GoogleScholarGoogle Scholar |

Eggimann, D. W., and Betzer, P. R. (1976). Decomposition and analysis of refractory oceanic suspended materials. Analytical Chemistry 48, 886–890.
Decomposition and analysis of refractory oceanic suspended materials.Crossref | GoogleScholarGoogle Scholar |

Ellwood, M. J. (2004). Zinc and cadmium speciation in subantarctic waters east of New Zealand. Marine Chemistry 87, 37–58.
Zinc and cadmium speciation in subantarctic waters east of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Ellwood, M. J. (2008). Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between 40–52°S; 155–160°E. Marine Chemistry 112, 107–117.
Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between 40–52°S; 155–160°E.Crossref | GoogleScholarGoogle Scholar |

Ellwood, M. J., and van den Berg, C. M. G. (2000). Zinc speciation in the northeastern Atlantic Ocean. Marine Chemistry 68, 295–306.
Zinc speciation in the northeastern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Ellwood, M. J., Hutchins, D. A., Lohan, M. C., Milne, A., Nasemann, P., Nodder, S. D., Sander, S. G., Strzepek, R., Wilhelm, S. W., and Boyd, P. W. (2015). Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proceedings of the National Academy of Sciences of the United States of America 112, E15–E20.
Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 25535372PubMed |

Franck, V. M., Smith, G. J., Bruland, K. W., and Brzezinski, M. A. (2005). Comparison of size-dependent carbon, nitrate, and silicic acid uptake rates in high- and low-iron waters. Limnology and Oceanography 50, 825–838.
Comparison of size-dependent carbon, nitrate, and silicic acid uptake rates in high- and low-iron waters.Crossref | GoogleScholarGoogle Scholar |

Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P., Krasting, J. P., and Winton, M. (2015). Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of Climate 28, 862–886.
Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models.Crossref | GoogleScholarGoogle Scholar |

Harrison, W. G., Harris, L. R., and Irwin, B. D. (1996). The kinetics of nitrogen utilization in the oceanic mixed layer: nitrate and ammonium interactions at nanomolar concentrations. Limnology and Oceanography 41, 16–32.
The kinetics of nitrogen utilization in the oceanic mixed layer: nitrate and ammonium interactions at nanomolar concentrations.Crossref | GoogleScholarGoogle Scholar |

Hassler, C. S., Ridgway, K. R., Bowie, A. R., Butler, E. C. V., Clementson, L. A., Doblin, M. A., Davies, D. M., Law, C., Ralph, P. J., van der Merwe, P., Watson, R., and Ellwood, M. J. (2014). Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition. Marine and Freshwater Research 65, 517–537.
Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition.Crossref | GoogleScholarGoogle Scholar |

Herraiz-Borreguero, L., and Rintoul, S. R. (2011). Subantarctic mode water: distribution and circulation. Ocean Dynamics 61, 103–126.
Subantarctic mode water: distribution and circulation.Crossref | GoogleScholarGoogle Scholar |

Hunter, K. A., and Boyd, P. (1999). Biogeochemistry of trace metals in the ocean. Marine and Freshwater Research 50, 739–753.
Biogeochemistry of trace metals in the ocean.Crossref | GoogleScholarGoogle Scholar |

Hutchins, D. A., Sedwick, P. N., DiTullio, G. R., Boyd, P. W., Quéguiner, B., Griffiths, F. B., and Crossley, C. (2001). Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: experimental results from the SAZ Project. Journal of Geophysical Research – Oceans 106, 31559–31572.
Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: experimental results from the SAZ Project.Crossref | GoogleScholarGoogle Scholar |

John, S. G., and Conway, T. M. (2014). A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters 394, 159–167.
A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes.Crossref | GoogleScholarGoogle Scholar |

John, G. S., Geis, R. W., Saito, M. A., and Boyle, E. A. (2007). Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and Oceanography 52, 2710–2714.
Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica.Crossref | GoogleScholarGoogle Scholar |

Köbberich, M., and Vance, D. (2017). Kinetic control on Zn isotope signatures recorded in marine diatoms. Geochimica et Cosmochimica Acta 210, 97–113.
Kinetic control on Zn isotope signatures recorded in marine diatoms.Crossref | GoogleScholarGoogle Scholar |

Lourey, M. J., and Trull, T. W. (2001). Seasonal nutrient depletion and carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean south of Australia. Journal of Geophysical Research – Oceans 106, 31463–31487.
Seasonal nutrient depletion and carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean south of Australia.Crossref | GoogleScholarGoogle Scholar |

Marković, T., Manzoor, S., Humphreys-Williams, E., Kirk, G. J. D., Vilar, R., and Weiss, D. J. (2017). Experimental determination of zinc isotope fractionation in complexes with the phytosiderophore 2′-deoxymugeneic acid (DMA) and its structural analogues, and implications for plant uptake mechanisms. Environmental Science & Technology 51, 98–107.
Experimental determination of zinc isotope fractionation in complexes with the phytosiderophore 2′-deoxymugeneic acid (DMA) and its structural analogues, and implications for plant uptake mechanisms.Crossref | GoogleScholarGoogle Scholar |

Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W. (1987). VERTEX – carbon cycling in the northeast Pacific. Deep-Sea Research – A. Oceanographic Research Papers 34, 267–285.
VERTEX – carbon cycling in the northeast Pacific.Crossref | GoogleScholarGoogle Scholar |

Mattinson, J. M. (1972). Preparations of hydrofluoric, hydrochloric and nitric acids at ultralow lead levels. Analytical Chemistry 44, 1715–1716.
Preparations of hydrofluoric, hydrochloric and nitric acids at ultralow lead levels.Crossref | GoogleScholarGoogle Scholar |

Metzl, N., Tilbrook, B., and Poisson, A. (1999). The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus – B. Chemical and Physical Meteorology 51, 849–861.
The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean.Crossref | GoogleScholarGoogle Scholar |

Moeller, K., Schoenberg, R., Pedersen, R.-B., Weiss, D., and Dong, S. (2012). Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research 36, 177–199.
Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations.Crossref | GoogleScholarGoogle Scholar |

Moreau, S., Penna, A. D., Llort, J., Patel, R., Langlais, C., Boyd, P. W., Matear, R. J., Phillips, H. E., Trull, T. W., Tilbrook, B., Lenton, A., and Strutton, P. G. (2017). Eddy-induced carbon transport across the Antarctic Circumpolar Current. Global Biogeochemical Cycles 31, 1368–1386.
Eddy-induced carbon transport across the Antarctic Circumpolar Current.Crossref | GoogleScholarGoogle Scholar |

Oliver, E. C. J., and Holbrook, N. J. (2014). Extending our understanding of South Pacific gyre ‘spin-up’: modeling the East Australian Current in a future climate. Journal of Geophysical Research – Oceans 119, 2788–2805.
Extending our understanding of South Pacific gyre ‘spin-up’: modeling the East Australian Current in a future climate.Crossref | GoogleScholarGoogle Scholar |

Orsi, A. H., Whitworth, I. I. I. T., and Nowlin, J. W. D. (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-sea Research – I. Oceanographic Research Papers 42, 641–673.
On the meridional extent and fronts of the Antarctic Circumpolar Current.Crossref | GoogleScholarGoogle Scholar |

Paasche, E. (1973). Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Marine Biology 19, 117–126.
Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient.Crossref | GoogleScholarGoogle Scholar |

Patel, R. S., Phillips, H. E., Strutton, P. G., Lenton, A., and Llort, J. (2019). Meridional heat and salt transport across the subantarctic front by cold-core eddies. Journal of Geophysical Research – Oceans 124, 981–1004.
Meridional heat and salt transport across the subantarctic front by cold-core eddies.Crossref | GoogleScholarGoogle Scholar |

Petrou, K., Hassler, C. S., Doblin, M. A., Shelly, K., Schoemann, V., van den Enden, R., Wright, S., and Ralph, P. J. (2011). Iron-limitation and high light stress on phytoplankton populations from the Australian Sub-Antarctic Zone (SAZ). Deep-sea Research – II. Topical Studies in Oceanography 58, 2200–2211.
Iron-limitation and high light stress on phytoplankton populations from the Australian Sub-Antarctic Zone (SAZ).Crossref | GoogleScholarGoogle Scholar |

Poitrasson, F., and Freydier, R. (2005). Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chemical Geology 222, 132–147.
Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS.Crossref | GoogleScholarGoogle Scholar |

Raimbault, P., and Garcia, N. (2008). Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates. Biogeosciences 5, 323–338.
Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates.Crossref | GoogleScholarGoogle Scholar |

Raven, J. A. (2013). The evolution of autotrophy in relation to phosphorus requirement. Journal of Experimental Botany 64, 4023–4046.
The evolution of autotrophy in relation to phosphorus requirement.Crossref | GoogleScholarGoogle Scholar | 24123454PubMed |

Ridgway, K. R. (2007). Seasonal circulation around Tasmania: an interface between eastern and western boundary dynamics. Journal of Geophysical Research 112, C10016.
Seasonal circulation around Tasmania: an interface between eastern and western boundary dynamics.Crossref | GoogleScholarGoogle Scholar |

Rintoul, S. R., and Trull, T. W. (2001). Seasonal evolution of the mixed layer in the Subantarctic Zone south of Australia. Journal of Geophysical Research – Oceans 106, 31447–31462.
Seasonal evolution of the mixed layer in the Subantarctic Zone south of Australia.Crossref | GoogleScholarGoogle Scholar |

Roshan, S., DeVries, T., Wu, J., and Chen, G. (2018). The internal cycling of zinc in the ocean. Global Biogeochemical Cycles 32, 1833–1849.
The internal cycling of zinc in the ocean.Crossref | GoogleScholarGoogle Scholar |

Sallée, J. B., Wienders, N., Speer, K., and Morrow, R. (2006). Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dynamics 56, 525–542.
Formation of subantarctic mode water in the southeastern Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Samanta, M., Ellwood, M. J., and Mortimer, G. E. (2016). A method for determining the isotopic composition of dissolved zinc in seawater by MC-ICP-MS with a 67Zn–68Zn double spike. Microchemical Journal 126, 530–537.
A method for determining the isotopic composition of dissolved zinc in seawater by MC-ICP-MS with a 67Zn–68Zn double spike.Crossref | GoogleScholarGoogle Scholar |

Samanta, M., Ellwood, M. J., Sinoir, M., and Hassler, C. S. (2017). Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Marine Chemistry 192, 1–12.
Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Samanta, M., Ellwood, M. J., and Strzepek, R. F. (2018). Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations. Limnology and Oceanography 63, 660–671.
Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations.Crossref | GoogleScholarGoogle Scholar |

Sarmiento, J. L., Gruber, N., Brzezinski, M. A., and Dunne, J. P. (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60.
High-latitude controls of thermocline nutrients and low latitude biological productivity.Crossref | GoogleScholarGoogle Scholar | 14702082PubMed |

Schlosser, C., Klar, J. K., Wake, B. D., Snow, J. T., Honey, D. J., Woodward, E. M. S., Lohan, M. C., Achterberg, E. P., and Moore, C. M. (2014). Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide. Proceedings of the National Academy of Sciences of the United States of America 111, 1438–1442.
Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide.Crossref | GoogleScholarGoogle Scholar | 24367112PubMed |

Sedwick, P. N., DiTullio, G. R., Hutchins, D. A., Boyd, P. W., Griffiths, F. B., Crossley, A. C., Trull, T. W., and Queguiner, B. (1999). Limitation of algal growth by iron deficiency in the Australian Subantarctic region. Geophysical Research Letters 26, 2865–2868.
Limitation of algal growth by iron deficiency in the Australian Subantarctic region.Crossref | GoogleScholarGoogle Scholar |

Shadwick, E. H., Trull, T. W., Tilbrook, B., Sutton, A. J., Schulz, E., and Sabine, C. L. (2015). Seasonality of biological and physical controls on surface ocean CO2 from hourly observations at the Southern Ocean Time Series site south of Australia. Global Biogeochemical Cycles 29, 223–238.
Seasonality of biological and physical controls on surface ocean CO2 from hourly observations at the Southern Ocean Time Series site south of Australia.Crossref | GoogleScholarGoogle Scholar |

Speer, K., Rintoul, S. R., and Sloyan, B. (2000). The diabatic deacon cell. Journal of Physical Oceanography 30, 3212–3222.
The diabatic deacon cell.Crossref | GoogleScholarGoogle Scholar |

Strzepek, R. F., Hunter, K. A., Frew, R. D., Harrison, P. J., and Boyd, P. W. (2012). Iron–light interactions differ in Southern Ocean phytoplankton. Limnology and Oceanography 57, 1182–1200.
Iron–light interactions differ in Southern Ocean phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Sunda, W. G., and Huntsman, S. A. (1992). Feedback interactions between zinc and phytoplankton in seawater. Limnology and Oceanography 37, 25–40.
Feedback interactions between zinc and phytoplankton in seawater.Crossref | GoogleScholarGoogle Scholar |

Tagliabue, A., Sallée, J.-B., Bowie, A. R., Levy, M., Swart, S., and Boyd, P. W. (2014). Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nature Geoscience 7, 314–320.
Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing.Crossref | GoogleScholarGoogle Scholar |

Thompson, C. M., and Ellwood, M. J. (2014). Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean. Marine Chemistry 165, 1–9.
Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Trull, T., Rintoul, S. R., Hadfield, M., and Abraham, E. R. (2001a). Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean. Deep-sea Research – II. Topical Studies in Oceanography 48, 2439–2466.
Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Trull, T. W., Bray, S. G., Manganini, S. J., Honjo, S., and Francois, R. (2001b). Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia. Journal of Geophysical Research – Oceans 106, 31489–31509.
Moored sediment trap measurements of carbon export in the Subantarctic and Polar Frontal Zones of the Southern Ocean, south of Australia.Crossref | GoogleScholarGoogle Scholar |

Twining, B. S., Nodder, S. D., King, A. L., Hutchins, D. A., LeCleir, G. R., DeBruyn, J. M., Maas, E. W., Vogt, S., Wilhelm, S. W., and Boyd, P. W. (2014). Differential remineralization of major and trace elements in sinking diatoms Limnology and Oceanography 59, 689–704.
Differential remineralization of major and trace elements in sinking diatomsCrossref | GoogleScholarGoogle Scholar |

Vance, D., Little, S. H., de Souza, G. F., Khatiwala, S., Lohan, M. C., and Middag, R. (2017). Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nature Geoscience 10, 202–206.
Silicon and zinc biogeochemical cycles coupled through the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Wang, R. M., Archer, C., Bowie, A. R., and Vance, D. (2018). Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: the impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology 12, 12–34.

Weber, T., John, S., Tagliabue, A., and DeVries, T. (2018). Biological uptake and reversible scavenging of zinc in the global ocean. Science 361, 72–76.
Biological uptake and reversible scavenging of zinc in the global ocean.Crossref | GoogleScholarGoogle Scholar | 29976823PubMed |

Weeding, B., and Trull, T. W. (2014). Hourly oxygen and total gas tension measurements at the Southern Ocean Time Series site reveal winter ventilation and spring net community production. Journal of Geophysical Research – Oceans 119, 348–358.
Hourly oxygen and total gas tension measurements at the Southern Ocean Time Series site reveal winter ventilation and spring net community production.Crossref | GoogleScholarGoogle Scholar |

Westwood, K. J., Brian Griffiths, F., Webb, J. P., and Wright, S. W. (2011). Primary production in the Sub-Antarctic and Polar Frontal Zones south of Tasmania, Australia; SAZ-Sense survey, 2007. Deep-sea Research – II. Topical Studies in Oceanography 58, 2162–2178.
Primary production in the Sub-Antarctic and Polar Frontal Zones south of Tasmania, Australia; SAZ-Sense survey, 2007.Crossref | GoogleScholarGoogle Scholar |

Wood, E. D., Armstrong, F. A. J., and Richards, F. A. (1967). Determination of nitrate in sea water by cadmium-copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom 47, 23–31.
Determination of nitrate in sea water by cadmium-copper reduction to nitrite.Crossref | GoogleScholarGoogle Scholar |