Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH FRONT (Open Access)

A unique temperate rocky coastal hydrothermal vent system (Whakaari–White Island, Bay of Plenty, New Zealand): constraints for ocean acidification studies

R. Zitoun A H M , S. D. Connell B , C. E. Cornwall https://orcid.org/0000-0002-6154-4082 C D , K. I. Currie H , K. Fabricius E , L. J. Hoffmann F , M. D. Lamare G , J. Murdoch A H , S. Noonan E , S. G. Sander A H I , M. A. Sewell J , N. T. Shears K , C. M. G. van den Berg L and A. M. Smith G
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.

B Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

C School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.

D School of Earth Sciences and Oceans Institute, ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, WA 6009, Australia.

E Australian Institute for Marine Science, PMB 3, Townsville MC, Qld 4810, Australia.

F Department of Botany, University of Otago, PO Box 54, Dunedin, 9054, New Zealand.

G Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.

H National Institute for Water and Atmospheric (NIWA)/University of Otago Research Centre for Oceanography, PO Box 56, Dunedin, 9054, New Zealand.

I International Atomic Energy Agency (IAEA) Environment Laboratories, Department of Nuclear Sciences and Applications, B.P. 800, 98000 Monaco, Principality of Monaco.

J School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.

K Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, 160 Goat Island Road, Auckland, 0985, New Zealand

L School of Environmental Sciences, University of Liverpool, 74 Bedford Street, Liverpool, L69 7ZT, UK.

M Corresponding author. Email: rebecca.zitoun@outlook.com

Marine and Freshwater Research 71(3) 321-344 https://doi.org/10.1071/MF19167
Submitted: 13 May 2019  Accepted: 2 September 2019   Published: 18 November 2019

Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND

Abstract

In situ effects of ocean acidification are increasingly studied at submarine CO2 vents. Here we present a preliminary investigation into the water chemistry and biology of cool temperate CO2 vents near Whakaari–White Island, New Zealand. Water samples were collected inside three vent shafts, within vents at a distance of 2 m from the shaft and at control sites. Vent samples contained both seawater pH on the total scale (pHT) and carbonate saturation states that were severely reduced, creating conditions as predicted for beyond the year 2100. Vent samples showed lower salinities, higher temperatures and greater nutrient concentrations. Sulfide levels were elevated and mercury levels were at concentrations considered toxic at all vent and control sites, but stable organic and inorganic ligands were present, as deduced from Cu speciation data, potentially mediating harmful effects on local organisms. The biological investigations focused on phytoplankton, zooplankton and macroalgae. Interestingly, we found lower abundances but higher diversity of phytoplankton and zooplankton at sites in the direct vicinity of Whakaari. Follow-up studies will need a combination of methods and approaches to attribute observations to specific drivers. The Whakaari vents represent a unique ecosystem with considerable biogeochemical complexity, which, like many other vent systems globally, require care in their use as a model of ‘future oceans’.

Additional keywords: carbon dioxide, trace metal speciation, volcanic submarine vent.


References

Agostini, S., Wada, S., Kon, K., Omori, A., Kohtsuka, H., Fujimura, H., Tsuchiya, Y., Sato, T., Shinagawa, H., Yamada, Y., and Inaba, K. (2015). Geochemistry of two shallow CO2 seeps in Shikine Island (Japan) and their potential for ocean acidification research. Regional Studies in Marine Science 2, 45–53.
Geochemistry of two shallow CO2 seeps in Shikine Island (Japan) and their potential for ocean acidification research.Crossref | GoogleScholarGoogle Scholar |

Al-Farawati, R., and van den Berg, C. M. G. (1997). The determination of sulfide in seawater by flow-analysis with voltammetric detection. Marine Chemistry 57, 277–286.
The determination of sulfide in seawater by flow-analysis with voltammetric detection.Crossref | GoogleScholarGoogle Scholar |

Amin, S. A., Moffett, J. W., Martens-Habbena, W., Jacquot, J. E., Han, Y., Devol, A., Ingalls, A. E., Stahl, D. A., and Armbrust, E. (2013). Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment. Limnology and Oceanography 58, 2037–2045.
Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment.Crossref | GoogleScholarGoogle Scholar |

Annett, A. L., Lapi, S., Ruth, T. J., and Maldonado, M. T. (2008). The effects of Cu and Fe availability on the growth and Cu : C ratios of marine diatoms. Limnology and Oceanography 53, 2451–2461.
The effects of Cu and Fe availability on the growth and Cu : C ratios of marine diatoms.Crossref | GoogleScholarGoogle Scholar |

Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105, 17442–17446.
Ocean acidification causes bleaching and productivity loss in coral reef builders.Crossref | GoogleScholarGoogle Scholar |

Australian and New Zealand Environment and Conservation Council (1992). ‘Australian Water Quality Guidelines for Fresh and Marine Waters. National Water Quality Management Strategy.’ (ANZECC and Agriculture and Resource Management Council of Australia and New Zealand: Canberra, ACT, Australia.)

Australian and New Zealand Environment and Conservation Council (2000). ‘Australian and New Zealand Guidelines for Fresh and Marine Water Quality.’ (ANZECC and Agriculture and Resource Management Council of Australia and New Zealand: Canberra, ACT, Australia.)

Baggini, C., Salomidi, M., Voutsinas, E., Bray, L., Krasakopoulou, E., and Hall-Spencer, J. M. (2014). Seasonality affects macroalgal community response to increases in pCO2. PLoS One 9, e106520.
Seasonality affects macroalgal community response to increases in pCO2.Crossref | GoogleScholarGoogle Scholar | 25184242PubMed |

Balcom, P. H., Fitzgerald, W. F., Vandal, G. M., Lamborg, C. H., Rolfhus, K. R., Langer, C. S., and Hammerschmidt, C. R. (2004). Mercury sources and cycling in the Connecticut River and Long Island Sound. Marine Chemistry 90, 53–74.
Mercury sources and cycling in the Connecticut River and Long Island Sound.Crossref | GoogleScholarGoogle Scholar |

Bi, Z. S., Salaun, P., and van den Berg, C. M. G. (2013). Study of bare and mercury-coated vibrated carbon, gold and silver microwire electrodes for the determination of lead and cadmium in seawater by anodic stripping voltammetry. Electroanalysis 25, 357–366.
Study of bare and mercury-coated vibrated carbon, gold and silver microwire electrodes for the determination of lead and cadmium in seawater by anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar |

Biller, D. V., and Bruland, K. W. (2012). Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS). Marine Chemistry 130–131, 12–20.
Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).Crossref | GoogleScholarGoogle Scholar |

Bloom, N. S., and Crecelius, E. A. (1983). Determination of mercury in seawater at sub-nanogram per liter levels. Marine Chemistry 14, 49–59.
Determination of mercury in seawater at sub-nanogram per liter levels.Crossref | GoogleScholarGoogle Scholar |

Boatta, F., D’Alessandro, W., Gagliano, A. L., Liotta, M., Milazzo, M., Rodolfo-Metalpa, R., Hall-Spencer, J. M., and Parello, F. (2013). Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Marine Pollution Bulletin 73, 485–494.
Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 23465567PubMed |

Bown, J., Laan, P., Ossebaar, S., Bakker, K., Rozema, P., and de Baar, H. J. (2017). Bioactive trace metal time series during Austral summer in Ryder Bay, Western Antarctic Peninsula. Deep-sea Research – II. Topical Studies in Oceanography 139, 103–119.
Bioactive trace metal time series during Austral summer in Ryder Bay, Western Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |

Boyd, R. S. (2010). Heavy metal pollutants and chemical ecology: exploring new frontiers. Journal of Chemical Ecology 36, 46–58.
Heavy metal pollutants and chemical ecology: exploring new frontiers.Crossref | GoogleScholarGoogle Scholar | 20108028PubMed |

Boyd, C. E. (2014). Hydrogen sulfide, toxic but manageable. In Global Aquaculture Advocate, pp. 34–36. Available at https://aquafishcrsp.oregonstate.edu/sites/aquafishcrsp.oregonstate.edu/files/boyd2014hydrogensulfide_gaa.pdf [Verified 10 October 2019].

Boyd, P. W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J. P., Havenhand, J., Hutchins, D. A., Riebesell, U., Rintoul, M. S., Vichi, M., and Biswas, H. (2018). Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change – a review. Global Change Biology 24, 2239–2261.
Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change – a review.Crossref | GoogleScholarGoogle Scholar | 29476630PubMed |

Brand, L. E., Sunda, W. G., and Guillard, R. R. (1986). Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology 96, 225–250.
Reduction of marine phytoplankton reproduction rates by copper and cadmium.Crossref | GoogleScholarGoogle Scholar |

Brinkman, T. J., and Smith, A. M. (2015). Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand. Marine and Freshwater Research 66, 360–370.
Effect of climate change on crustose coralline algae at a temperate vent site, White Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Bruland, K. W., Donat, J. R., and Hutchins, D. A. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography 36, 1555–1577.
Interactive influences of bioactive trace metals on biological production in oceanic waters.Crossref | GoogleScholarGoogle Scholar |

Bruland, K. W., Middag, R., and Lohan, M. C. (2014). Controls of trace metals in seawater. In ‘Treatise on Geochemistry’, 2nd edn. (Eds M. J. Mottl and H. Elderfield.) pp. 19–51. (Saunders, Elsevier: Philadelphia, PA, USA.)

Bundy, R. M., Abdulla, H. A., Hatcher, P. G., Biller, D. V., Buck, K. N., and Barbeau, K. A. (2015). Iron-binding ligands and humic substances in the San Francisco Bay estuary and estuarine-influenced shelf regions of coastal California. Marine Chemistry 173, 183–194.
Iron-binding ligands and humic substances in the San Francisco Bay estuary and estuarine-influenced shelf regions of coastal California.Crossref | GoogleScholarGoogle Scholar |

Burger, A., and Lichtscheidl, I. (2019). Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. The Science of the Total Environment 653, 1458–1512.
Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes.Crossref | GoogleScholarGoogle Scholar | 30759584PubMed |

Caldeira, K., and Wickett, M. E. (2003). Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365.
Oceanography: anthropogenic carbon and ocean pH.Crossref | GoogleScholarGoogle Scholar | 14508477PubMed |

Calosi, P., Rastrick, S. P. S., Lombardi, C., de Guzman, H. J., Davidson, L., Jahnke, M., Giangrande, A., Hardege, J. D., Schulze, A., Spicer, J. I., and Gambi, M.-C. (2013). Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20120444.
Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.Crossref | GoogleScholarGoogle Scholar | 23980247PubMed |

Chavtur, V. G. (1992). Specifics of structure and distribution of zooplankton in condition of underwater volcanism at the shelf and at the upper divisions of continental slope of the West Pacific. Deposition to VINITI 22.09.92, Manuscript N615–B, 92, Vladivostok, Russia. [In Russian].

Chen, X. G., Lyu, S. S., Garbe-Schönberg, D., Lebrato, M., Li, X., Zhang, H. Y., Zhang, P. P., Chen, C. T. A., and Ye, Y. (2018). Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan. Journal of Marine Systems 180, 211–219.
Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan.Crossref | GoogleScholarGoogle Scholar |

Chiodini, G., Caliro, S., Caramanna, G., Granieri, D., Minopoli, C., Moretti, R., Perotta, L., and Ventura, G. (2006). Geochemistry of the submarine gaseous emissions of Panarea (Aeolian Islands, Southern Italy): magmatic vs. hydrothermal origin and implications for volcanic surveillance. Pure and Applied Geophysics 163, 759–780.
Geochemistry of the submarine gaseous emissions of Panarea (Aeolian Islands, Southern Italy): magmatic vs. hydrothermal origin and implications for volcanic surveillance.Crossref | GoogleScholarGoogle Scholar |

Clarkson, B. D., and Clarkson, B. R. (1994). Vegetation decline following recent eruptions on White Island (Whakaari), Bay of Plenty, New Zealand. New Zealand Journal of Botany 32, 21–36.
Vegetation decline following recent eruptions on White Island (Whakaari), Bay of Plenty, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Cole, J. W., Thordarson, T., and Burt, R. M. (2000). Magma origin and evolution of White Island (Whakaari) volcano, Bay of Plenty, New Zealand. Journal of Petrology 41, 867–895.
Magma origin and evolution of White Island (Whakaari) volcano, Bay of Plenty, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E., and McCulloch, M. T. (2018). Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Global Change Biology 24, 4857–4868.
Similar controls on calcification under ocean acidification across unrelated coral reef taxa.Crossref | GoogleScholarGoogle Scholar | 29957854PubMed |

Connell, S. D., and Irving, A. D. (2008). Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. Journal of Biogeography 35, 1608–1621.
Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., and Russell, B. D. (2010). The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the Royal Society of London – B. Biological Sciences 277, 1409–1415.
The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., and Russell, B. D. (2013). The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20120442.
The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance.Crossref | GoogleScholarGoogle Scholar | 23980244PubMed |

Connell, S. D., Doubleday, Z. A., Hamlyn, S. B., Foster, N. R., Harley, C. D. G., Kelaher, B. P., Nagelkerken, I., Sara, G., and Russell, B. D. (2017). How ocean acidification can benefit calcifiers. Current Biology 27, R95–R96.
How ocean acidification can benefit calcifiers.Crossref | GoogleScholarGoogle Scholar | 28171763PubMed |

Connell, S. D., Doubleday, Z. A., Foster, N. R., Hamlyn, S. B., Harley, C. D., Helmuth, B., Kelaher, B. P., Nagelkerken, I., Rodgers, K. L., Sarà, G., and Russell, B. D. (2018). The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005–1010.
The duality of ocean acidification as a resource and a stressor.Crossref | GoogleScholarGoogle Scholar | 29714829PubMed |

Cornwall, C. E., Hepburn, C. D., McGraw, C. M., Currie, K. I., Pilditch, C. A., Hunter, K. A., Boyd, P. W., and Hurd, C. L. (2013). Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society of London – B. Biological Sciences 280, 20132201.
Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Cornwall, C. E., Boyd, P. W., McGraw, C. M., Hepburn, C. D., Pilditch, C. A., Morris, J. N., Smith, A. M., and Hurd, C. L. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS One 9, e97235.
Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa.Crossref | GoogleScholarGoogle Scholar | 24824089PubMed |

Cornwall, C. E., Revill, A. T., Hall-Spencer, J. M., Milazzo, M., Raven, J. A., and Hurd, C. L. (2017a). Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Scientific Reports 7, 46297.
Inorganic carbon physiology underpins macroalgal responses to elevated CO2.Crossref | GoogleScholarGoogle Scholar | 28417970PubMed |

Cornwall, C. E., Comeau, S., and McCulloch, M. T. (2017b). Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biology 23, 4245–4256.
Coralline algae elevate pH at the site of calcification under ocean acidification.Crossref | GoogleScholarGoogle Scholar | 28370806PubMed |

Cornwall, C. E., Comeau, S., DeCarlo, T. M., Moore, B., D’Alexis, Q., and McCulloch, M. T. (2018). Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proceedings of the Royal Society of London – B. Biological Sciences 285, 20181168.
Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability.Crossref | GoogleScholarGoogle Scholar |

Cotte, L., Omanović, D., Laës, A., Cathalot, C., Sarradin, P.-M., and Riso, R. (2018). On the nature of dissolved copper ligands in the early buoyant plume of hydrothermal vents. Environmental Chemistry 15, 58–73.
On the nature of dissolved copper ligands in the early buoyant plume of hydrothermal vents.Crossref | GoogleScholarGoogle Scholar |

Cunha, L., Amaral, A., Medeiros, V., Martins, G. M., Wallenstein, F. F., Couto, R. P., Neto, A. I., and Rodrigues, A. (2008). Bioavailable metals and cellular effects in the digestive gland of marine limpets living close to shallow water hydrothermal vents. Chemosphere 71, 1356–1362.
Bioavailable metals and cellular effects in the digestive gland of marine limpets living close to shallow water hydrothermal vents.Crossref | GoogleScholarGoogle Scholar | 18166212PubMed |

Dahms, H. U., Schizas, N. V., James, R. A., Wang, L., and Hwang, J. S. (2018). Marine hydrothermal vents as templates for global change scenarios. Hydrobiologia 818, 1–10.
Marine hydrothermal vents as templates for global change scenarios.Crossref | GoogleScholarGoogle Scholar |

Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds) (2007). Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, IOCCP Report number 8, North Pacific Marine Science Organization, Sidney, BC, Canada.

Donachie, S. P., Christenson, B. W., Kunkel, D. D., Malahoff, A., and Alam, M. (2002). Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand. Extremophiles 6, 419–425.
Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand.Crossref | GoogleScholarGoogle Scholar | 12382119PubMed |

Echeveste, P., Croot, P., and von Dassow, P. (2018). Differences in the sensitivity to Cu and ligand production of coastal vs offshore strains of Emiliania huxleyi. The Science of the Total Environment 625, 1673–1680.
Differences in the sensitivity to Cu and ligand production of coastal vs offshore strains of Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 29056389PubMed |

Enochs, I. C., Manzello, D. P., Donham, E. M., Kolodziej, G., Okano, R., Johnston, L., Young, C., Iguel, J., Edwards, C. B., Fox, M. D., and Valentino, L. (2015). Shift from coral to macroalgae dominance on a volcanically acidified reef. Nature Climate Change 5, 1083–1088.
Shift from coral to macroalgae dominance on a volcanically acidified reef.Crossref | GoogleScholarGoogle Scholar |

Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165–169.
Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.Crossref | GoogleScholarGoogle Scholar |

Fabricius, K. E., De’ath, G., Noonan, S., and Uthicke, S. (2014). Ecological effects of ocean acidification and habitat complexity on reef-associated macro-invertebrate communities. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20132479.
Ecological effects of ocean acidification and habitat complexity on reef-associated macro-invertebrate communities.Crossref | GoogleScholarGoogle Scholar |

Fabricius, K. E., Kluibenschedl, A., Harrington, L., Noonan, S., and De’Ath, G. (2015). In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Scientific Reports 5, 9537.
In situ changes of tropical crustose coralline algae along carbon dioxide gradients.Crossref | GoogleScholarGoogle Scholar | 25835382PubMed |

Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65, 414–432.
Impacts of ocean acidification on marine fauna and ecosystem processes.Crossref | GoogleScholarGoogle Scholar |

Ferreira, C. M., Nagelkerken, I., Goldenberg, S. U., and Connell, S. D. (2018). CO2 emissions boost the benefits of crop production by farming damselfish. Nature Ecology & Evolution 2, 1223–1226.
CO2 emissions boost the benefits of crop production by farming damselfish.Crossref | GoogleScholarGoogle Scholar |

Gattuso, J. P., and Lavigne, H. (2009). Approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6, 2121–2133.
Approaches and software tools to investigate the impact of ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., and Hoegh-Guldberg, O. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722.
Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios.Crossref | GoogleScholarGoogle Scholar | 26138982PubMed |

German, C. R., and Von Damm, K. L. (2003). Hydrothermal processes. Treatise on Geochemistry 6, 181–222.
Hydrothermal processes.Crossref | GoogleScholarGoogle Scholar |

Giggenbach, W. F. (1975). Variations in the carbon, sulfur and chlorine contents of volcanic gas discharges from White Island, New Zealand. Bulletin Volcanologique 39, 15–27.
Variations in the carbon, sulfur and chlorine contents of volcanic gas discharges from White Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Giggenbach, W. F. (1987). Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry 2, 143–161.
Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Gledhill, M., Nimmo, M., Hill, S. J., and Brown, M. T. (1999). The release of copper-complexing ligands by the brown alga Fucus vesiculosus (Phaeophyceae) in response to increasing total copper levels. Journal of Phycology 35, 501–509.
The release of copper-complexing ligands by the brown alga Fucus vesiculosus (Phaeophyceae) in response to increasing total copper levels.Crossref | GoogleScholarGoogle Scholar |

Goldenberg, S. U., Nagelkerken, I., Marangon, E., Bonnet, A., Ferreira, C. M., and Connell, S. D. (2018). Ecological complexity buffers the impacts of future climate on marine consumers. Nature Climate Change 8, 229–233.
Ecological complexity buffers the impacts of future climate on marine consumers.Crossref | GoogleScholarGoogle Scholar |

González-Delgado, S., and Hernández, J. C. (2018). The importance of natural acidified systems in the study of ocean acidification: what have we learned? Advances in Marine Biology 80, 57–99.
The importance of natural acidified systems in the study of ocean acidification: what have we learned?Crossref | GoogleScholarGoogle Scholar | 30368306PubMed |

Grace, R. V. (1975). White Island notes. Tane 21, 91–100.

Grange, K. R., Murdoch, R. C., Battershill, C. N., and Singleton, R. J. (1992). A survey of the marine habitats and communities of White Island, Bay of Plenty. Department of Conservation Investigation number P977, New Zealand Oceanographic Institute DSIR 1992/8, Wellington, New Zealand.

Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., and Wrzosek-Jakubowska, J. (2016). Mercury in marine and oceanic waters – a review. Water, Air, and Soil Pollution 227, 371.
Mercury in marine and oceanic waters – a review.Crossref | GoogleScholarGoogle Scholar | 27656005PubMed |

Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M.-C. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99.
Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 18536730PubMed |

Hawkins, S. J., Evans, A. J., Dale, A. C., Firth, L. B., and Smith, I. P. (2018). The carbon dioxide vents of Ischtia, Italy. A natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems. Oceanography and Marine Biology – an Annual Review 56, 237–310.

Hernández, C. A., Sangil, C., and Hernández, J. C. (2016). A new CO2 vent for the study of ocean acidification in the Atlantic. Marine Pollution Bulletin 109, 419–426.
A new CO2 vent for the study of ocean acidification in the Atlantic.Crossref | GoogleScholarGoogle Scholar | 27210563PubMed |

Hocking, M. W., Hannington, M. D., Percival, J. B., Stoffers, P., Schwarz-Schampera, U., and de Ronde, C. E. J. (2010). Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand. Journal of Volcanology and Geothermal Research 191, 180–192.
Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Hoffmann, L. J., Breitbarth, E., Ardelan, M. V., Duggen, S., Olgun, N., Hassellöv, M., and Wängberg, S.-Å. (2012). Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Marine Chemistry 132–133, 28–33.
Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar |

Inoue, S., Kayanne, H., Yamamoto, S., and Kurihara, H. (2013). Spatial community shift from hard to soft corals in acidified water. Nature Climate Change 3, 683–687.
Spatial community shift from hard to soft corals in acidified water.Crossref | GoogleScholarGoogle Scholar |

Ivanina, A. V., and Sokolova, I. M. (2015). Interactive effects of metal pollution and ocean acidification on physiology of marine organisms. Current Zoology 61, 653–668.
Interactive effects of metal pollution and ocean acidification on physiology of marine organisms.Crossref | GoogleScholarGoogle Scholar |

Jacquot, J. E., Horak, R. E., Amin, S. A., Devol, A. H., Ingalls, A. E., Armbrust, E. V., Stahl, D. A., and Moffett, J. W. (2014). Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Marine Chemistry 162, 37–49.
Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary.Crossref | GoogleScholarGoogle Scholar |

Jahn, A., and Theede, H. (1997). Different degrees of tolerance to hydrogen sulphide in populations of Macoma balthica (Bivalvia, Tellinidae). Marine Ecology Progress Series 154, 185–196.
Different degrees of tolerance to hydrogen sulphide in populations of Macoma balthica (Bivalvia, Tellinidae).Crossref | GoogleScholarGoogle Scholar |

Jakimska, A., Konieczka, P., Skóra, K., and Namieśnik, J. (2011). Bioaccumulation of metals in tissues of marine animals, Part II: metal concentrations in animal tissues. Polish Journal of Environmental Studies 20, 1127–1146.

James, R. K., Hepburn, C. D., Cornwall, C. E., McGraw, C. M., and Hurd, C. L. (2014). Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Marine Biology 161, 1687–1696.
Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Kamenos, N. A., Burdett, H. L., Aloisio, E., Findlay, H. S., Martin, S., Longbone, C., Dunn, J., Widdicombe, S., and Calosi, P. (2013). Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biology 19, 3621–3628.
Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 23943376PubMed |

Karlson, B., Godhe, A., Cusack, C., and Bresnan, E. (2011). Introduction to methods for quantitative phytoplankton analysis. In ‘Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis IOC Manuals and Guides’. (Eds B. Karlson, A. Godhe, C. Cusack, and E. Bresnan.) Number 55, pp. 5–12. (UNESCO: Paris, France.)

Karthick, P., Sankar, R. S., Kaviarasan, T., and Mohanraju, R. (2012). Ecological implications of trace metals in seaweeds: bioindication potential for metal contamination in Wandoor, South Andaman Island. The Egyptian Journal of Aquatic Research 38, 227–231.
Ecological implications of trace metals in seaweeds: bioindication potential for metal contamination in Wandoor, South Andaman Island.Crossref | GoogleScholarGoogle Scholar |

Kerrison, P., Hall-Spencer, J. M., Suggett, D. J., Hepburn, L. J., and Steinke, M. (2011). Assessment of pH variability at a coastal CO2 vent for ocean acidification studies. Estuarine, Coastal and Shelf Science 94, 129–137.
Assessment of pH variability at a coastal CO2 vent for ocean acidification studies.Crossref | GoogleScholarGoogle Scholar |

Kiaune, L., and Singhasemanon, N. (2011). Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Reviews of Environmental Contamination and Toxicology 213, 1–26.
Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.Crossref | GoogleScholarGoogle Scholar | 21541846PubMed |

Kleint, C., Kuzmanovski, S., Powell, Z., Bühring, S. I., Sander, S. G., and Koschinsky, A. (2015). Organic Cu-complexation at the shallow marine hydrothermal vent fields off the coast of Milos (Greece), Dominica (Lesser Antilles) and the Bay of Plenty (New Zealand). Marine Chemistry 173, 244–252.
Organic Cu-complexation at the shallow marine hydrothermal vent fields off the coast of Milos (Greece), Dominica (Lesser Antilles) and the Bay of Plenty (New Zealand).Crossref | GoogleScholarGoogle Scholar |

Klevenz, V., Sander, S. G., Perner, M., and Koschinsky, A. (2012). Amelioration of free copper by hydrothermal vent microbes as a response to high copper concentrations. Chemistry and Ecology 28, 405–420.
Amelioration of free copper by hydrothermal vent microbes as a response to high copper concentrations.Crossref | GoogleScholarGoogle Scholar |

Kogut, M. B., and Voelker, B. M. (2001). Strong copper-binding behaviour of terrestrial humic substances in seawater. Environmental Science & Technology 35, 1149–1156.
Strong copper-binding behaviour of terrestrial humic substances in seawater.Crossref | GoogleScholarGoogle Scholar |

Kozelka, P. B., and Bruland, K. W. (1998). Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island. Marine Chemistry 60, 267–282.
Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island.Crossref | GoogleScholarGoogle Scholar |

Kroeker, K. J., Micheli, F., Gambi, M. C., and Martz, T. R. (2011). Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 108, 14515–14520.
Divergent ecosystem responses within a benthic marine community to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 21844331PubMed |

Laglera, L. M., and Van den Berg, C. M. (2009). Evidence for geochemical control of iron by humic substances in seawater. Limnology and Oceanography 54, 610–619.
Evidence for geochemical control of iron by humic substances in seawater.Crossref | GoogleScholarGoogle Scholar |

Lamare, M. D., Liddy, M., and Uthicke, S. (2016). In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Proceedings of the Royal Society of London – B. Biological Sciences 283, 20161506.
In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites.Crossref | GoogleScholarGoogle Scholar |

Lamborg, C. H., Tseng, C. M., Fitzgerald, W. F., Balcom, P. H., and Hammerschmidt, C. R. (2003). Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with ‘reducible Hg’ titrations. Environmental Science & Technology 37, 3316–3322.
Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with ‘reducible Hg’ titrations.Crossref | GoogleScholarGoogle Scholar |

Lamborg, C., Bowman, K., Hammerschmidt, C., Gilmour, C., Munson, K., Selin, N., and Tseng, C. M. (2014). Mercury in the anthropocene ocean. Oceanography 27, 76–87.
Mercury in the anthropocene ocean.Crossref | GoogleScholarGoogle Scholar |

Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., and Prather, M. (2007). Historical overview of climate change. In ‘Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller.) pp. 95–127. (Cambridge University Press: Cambridge, UK, and New York, NY, USA.)

Leal, M. F. C., Vasconcelos, M. T. S. D., and Van den Berg, C. M. (1999). Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures. Limnology and Oceanography 44, 1750–1762.
Copper-induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures.Crossref | GoogleScholarGoogle Scholar |

Leal, P. P., Hurd, C. L., Sander, S. G., Armstrong, E., and Roleda, M. Y. (2016). Copper ecotoxicology of marine algae: a methodological appraisal. Chemistry and Ecology 32, 786–800.
Copper ecotoxicology of marine algae: a methodological appraisal.Crossref | GoogleScholarGoogle Scholar |

Levin, L. A., Baco, A. R., Bowden, D. A., Colaco, A., Cordes, E. E., Cunha, M. R., Demopoulos, A. W., Gobin, J., Grupe, B. M., Le, J., and Metaxas, A. (2016). Hydrothermal vents and methane seeps: rethinking the sphere of influence. Frontiers in Marine Science 3, 72.
Hydrothermal vents and methane seeps: rethinking the sphere of influence.Crossref | GoogleScholarGoogle Scholar |

Lidbury, I., Johnson, V., Hall-Spencer, J. M., Munn, C. B., and Cunliffe, M. (2012). Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Marine Pollution Bulletin 64, 1063–1066.
Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.Crossref | GoogleScholarGoogle Scholar | 22414852PubMed |

Lombardi, C., Rodolfo-Metalpa, R., Cocito, S., Gambi, M. C., and Taylor, P. D. (2011). Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification. Marine Ecology 32, 211–221.
Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Lorenzo, J. I., Beiras, R., Mubiana, V. K., and Blust, R. (2005). Copper uptake by Mytilus edulis in the presence of humic acids. Environmental Toxicology and Chemistry 24, 973–980.
Copper uptake by Mytilus edulis in the presence of humic acids.Crossref | GoogleScholarGoogle Scholar | 15839573PubMed |

Lorenzo, J. I., Nieto-Cid, M., Álvarez-Salgado, X. A., Pérez, P., and Beiras, R. (2007). Contrasting complexing capacity of dissolved organic matter produced during the onset, development and decay of a simulated bloom of the marine diatom Skeletonema costatum. Marine Chemistry 103, 61–75.
Contrasting complexing capacity of dissolved organic matter produced during the onset, development and decay of a simulated bloom of the marine diatom Skeletonema costatum.Crossref | GoogleScholarGoogle Scholar |

Lucia, M., Campos, M. L. A. M., and van den Berg, C. M. G. (1994). Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime. Analytica Chimica Acta 284, 481–496.
Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime.Crossref | GoogleScholarGoogle Scholar |

Maldonado, M. T., Allen, A. E., Chong, J. S., Lin, K., Leus, D., Karpenko, N., and Harris, S. L. (2006). Copper-dependent iron transport in coastal and oceanic diatoms. Limnology and Oceanography 51, 1729–1743.
Copper-dependent iron transport in coastal and oceanic diatoms.Crossref | GoogleScholarGoogle Scholar |

McCulloch, M. T., Holcomb, M., Rankenburg, K., and Trotter, J. A. (2014). Rapid, high-precision measurements of boron isotopic compositions in marine carbonates. Rapid Communications in Mass Spectrometry 28, 2704–2712.
Rapid, high-precision measurements of boron isotopic compositions in marine carbonates.Crossref | GoogleScholarGoogle Scholar | 25380492PubMed |

Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897–907.
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Crossref | GoogleScholarGoogle Scholar |

Middag, R., Séférian, R., Conway, T. M., John, S. G., Bruland, K. W., and de Baar, H. J. (2015). Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station. Marine Chemistry 177, 476–489.
Intercomparison of dissolved trace elements at the Bermuda Atlantic Time Series station.Crossref | GoogleScholarGoogle Scholar |

Millero, F. J., Woosley, R., Ditrolio, B., and Waters, J. (2009). Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22, 72–85.
Effect of ocean acidification on the speciation of metals in seawater.Crossref | GoogleScholarGoogle Scholar |

Moffett, J. W., and Brand, L. E. (1996). Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnology and Oceanography 41, 388–395.
Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress.Crossref | GoogleScholarGoogle Scholar |

Moffett, J., Zika, R., and Brand, L. (1990). Distribution and potential sources and sinks of copper chelators in the Sargasso Sea. Deep-Sea Research – A. Oceanographic Research Papers 37, 27–36.
Distribution and potential sources and sinks of copper chelators in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar |

Morel, F. M. (1983). ‘Principles of Aquatic Chemistry.’ (Wiley: New York, NY, USA.)

Morrow, K. M., Bourne, D. G., Humphrey, C., Botté, E. S., Laffy, P., Zaneveld, J. J., Uthicke, S., Fabricius, K. E., and Webster, N. S. (2015). Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. The ISME Journal 9, 894–908.
Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges.Crossref | GoogleScholarGoogle Scholar | 25325380PubMed |

Mousavi, A., Chávez, R. D., Ali, A. M. S., and Cabaniss, S. E. (2011). Mercury in natural waters: a mini-review. Environmental Forensics 12, 14–18.
Mercury in natural waters: a mini-review.Crossref | GoogleScholarGoogle Scholar |

Nagelkerken, I., Russell, B. D., Gillanders, B. M., and Connell, S. D. (2016). Ocean acidification alters fish populations indirectly through habitat modification. Nature Climate Change 6, 89–93.
Ocean acidification alters fish populations indirectly through habitat modification.Crossref | GoogleScholarGoogle Scholar |

Nairn, I. A., Houghton, B. F., and Cole, J. W. (1996). ‘Volcanic Hazards at White Island’, 2nd edn. Volcanic Hazards Information Series 3. (Ministry of Civil Defence: Palmerston North, New Zealand.)

Ngatia, L. III, J. G., Moriasi, D., and Taylor, R. (2019). Nitrogen and phosphorus eutrophication in marine ecosystems. In ‘Monitoring of Marine Pollution’. (Eds H. B. Fouzia.) pp. 1–17. (IntechOpen.)

Oldham, V. E., Owings, S. M., Jones, M. R., Tebo, B. M., and Luther, G. W. (2015). Chesapeake Bay. Marine Chemistry 171, 58–66.
Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar |

Omanović, D., Garnier, C., Louis, Y., Lenoble, V., Mounier, S., and Pižeta, I. (2010). Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry. Analytica Chimica Acta 664, 136–143.
Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 20363395PubMed |

Paquin, P. R., Santore, R. C., Wu, K. B., Kavvadas, C. D., and Di Toro, D. M. (2000). The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environmental Science & Policy 3, 175–182.
The biotic ligand model: a model of the acute toxicity of metals to aquatic life.Crossref | GoogleScholarGoogle Scholar |

Peers, G., Quesnel, S. A., and Price, N. M. (2005). Copper requirements for iron acquisition and growth of coastal and oceanic diatoms. Limnology and Oceanography 50, 1149–1158.
Copper requirements for iron acquisition and growth of coastal and oceanic diatoms.Crossref | GoogleScholarGoogle Scholar |

Pichler, T., Biscéré, T., Kinch, J., Zampighi, M., Houlbrèque, F., and Rodolfo-Metalpa, R. (2019). Suitability of the shallow water hydrothermal system at Ambitle Island (Papua New Guinea) to study the effect of high pCO2 on coral reefs. Marine Pollution Bulletin 138, 148–158.
Suitability of the shallow water hydrothermal system at Ambitle Island (Papua New Guinea) to study the effect of high pCO2 on coral reefs.Crossref | GoogleScholarGoogle Scholar | 30660256PubMed |

Propp, L. N., Obzhirov, A. I., and Propp, M. V. (1992). The gas and hydrochemical anomalies in the bottom layer of water in area of volcanic activity (Bay of Plenty, New Zealand). Okeanologiya 32, 680–686.

Radford-Knȩry, J., and Cutter, G. A. (1994). Biogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in the western North Atlantic Ocean. Geochimica et Cosmochimica Acta 58, 5421–5431.
Biogeochemistry of dissolved hydrogen sulfide species and carbonyl sulfide in the western North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution 120, 497–507.
Trace metal concentrations in aquatic invertebrates: why and so what?Crossref | GoogleScholarGoogle Scholar | 12442773PubMed |

Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M., and Achterberg, E. P. (2017). Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Analytica Chimica Acta 976, 1–13.
Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 28576313PubMed |

Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963). The influence of organisms on the composition of sea-water. In ‘The Composition of Seawater: Comparative and Descriptive Oceanography. The Sea: Ideas and Observations on Progress in the Study of the seas, Vol. 2’. (Ed. M. N. Hill.) pp. 26–77. (Interscience Publishers: New York, NY, USA.)

Ridgway, N. M., and Greig, M. J. N. (1986). Water movements in Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research 20, 447–453.
Water movements in Bay of Plenty, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Riebesell, U., and Gattuso, J. P. (2015). Lessons learned from ocean acidification research. Nature Climate Change 5, 12–14.
Lessons learned from ocean acidification research.Crossref | GoogleScholarGoogle Scholar |

Rivest, E. B., Comeau, S., and Cornwall, C. E. (2017). The role of natural variability in shaping the response of coral reef organisms to climate change. Current Climate Change Reports 3, 271–281.
The role of natural variability in shaping the response of coral reef organisms to climate change.Crossref | GoogleScholarGoogle Scholar |

Roleda, M. Y., Cornwall, C. E., Feng, Y., McGraw, C. M., Smith, A. M., and Hurd, C. L. (2015). Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS One 10, e0140394.
Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage.Crossref | GoogleScholarGoogle Scholar | 26469945PubMed |

Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X. A., Gasol, J. M., and Marrasé, C. (2011). Net production/consumption of fluorescent coloured dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Applied and Environmental Microbiology 77, 7490–7498.
Net production/consumption of fluorescent coloured dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates.Crossref | GoogleScholarGoogle Scholar | 21742918PubMed |

Rossi, G., and Tunnicliffe, V. (2017). Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel. Marine Ecology Progress Series 574, 49–64.
Trade-offs in a high CO2 habitat on a subsea volcano: condition and reproductive features of a bathymodioline mussel.Crossref | GoogleScholarGoogle Scholar |

Samson, C. R., Sikes, E. L., and Howard, W. R. (2005). Deglacial paleoceanographic history of the Bay of Plenty, New Zealand. Paleoceanography 20, PA4017.
Deglacial paleoceanographic history of the Bay of Plenty, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Sander, S. G., and Koschinsky, A. (2011). Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience 4, 145–150.
Metal flux from hydrothermal vents increased by organic complexation.Crossref | GoogleScholarGoogle Scholar |

Sander, S. G., Koschinsky, A., Massoth, G., Stott, M., and Hunter, K. A. (2007). Organic complexation of copper in deep-sea hydrothermal vent systems. Environmental Chemistry 4, 81–89.
Organic complexation of copper in deep-sea hydrothermal vent systems.Crossref | GoogleScholarGoogle Scholar |

Sander, S. G., Hunter, K., and Frew, R. (2009). 14 – Sampling and measurements of trace metals in seawater. In ‘Practical Guidelines for the Analysis of Seawater’. (Ed. O. Wurl.) pp. 305–327. (CRC Press: Boca Raton, FL, USA.)

Sarano, F., Murphy, R. C., Houghton, B. F., and Hedenquist, J. W. (1989). Preliminary observations of submarine geothermal activity in the vicinity of White Island volcano, Taupo volcanic zone, New Zealand. Journal of the Royal Society of New Zealand 19, 449–459.
Preliminary observations of submarine geothermal activity in the vicinity of White Island volcano, Taupo volcanic zone, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Semeniuk, D. M., Bundy, R. M., Payne, C. D., Barbeau, K. A., and Maldonado, M. T. (2015). Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Marine Chemistry 173, 222–233.
Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Shears, N. T., and Babcock, R. C. (2007). Quantitative description of mainland New Zealand’s shallow subtidal reef communities. Science & Technical Publication, Department of Conservation, Wellington, New Zealand.

Shimotori, K., Omori, Y., and Hama, T. (2009). Bacterial production of marine humic-like fluorescent dissolved organic matter and its biogeochemical importance. Aquatic Microbial Ecology 58, 55–66.
Bacterial production of marine humic-like fluorescent dissolved organic matter and its biogeochemical importance.Crossref | GoogleScholarGoogle Scholar |

Sommer, U. (2012). Experimental systems in aquatic ecology. In ‘eLS’. pp. 1–8. (Wiley: Chichester, UK.) https://doi.org/10.1002/9780470015902.A0003180.PUB2

Stockdale, A., Tipping, E., Lofts, S., and Mortimer, R. J. (2016). Effect of ocean acidification on organic and inorganic speciation of trace metals. Environmental Science & Technology 50, 1906–1913.
Effect of ocean acidification on organic and inorganic speciation of trace metals.Crossref | GoogleScholarGoogle Scholar |

Sunda, W. G., and Huntsman, S. A. (1996). Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnology and Oceanography 41, 373–387.
Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom.Crossref | GoogleScholarGoogle Scholar |

Sunda, W. G., and Huntsman, S. A. (1998a). Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environmental Science & Technology 32, 2961–2968.
Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater.Crossref | GoogleScholarGoogle Scholar |

Sunda, W. G., and Huntsman, S. A. (1998b). Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal algae Chlamydomonas. Limnology and Oceanography 43, 1055–1064.
Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal algae Chlamydomonas.Crossref | GoogleScholarGoogle Scholar |

Sunda, W. G., and Huntsman, S. A. (1998c). Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal diatom. Limnology and Oceanography 43, 1467–1475.
Interactive effects of external manganese, the toxic metals copper and zinc, and light in controlling cellular manganese and growth in a coastal diatom.Crossref | GoogleScholarGoogle Scholar |

Sunda, W. G., Barber, R. T., and Huntsman, S. A. (1981). Phytoplankton growth in nutrient rich seawater: importance of copper–manganese cellular interactions. Journal of Marine Research 39, 567–586.

Takahashi, M., Noonan, S. H. C., Fabricius, K. E., and Collier, C. J. (2016). The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents. ICES Journal of Marine Science 73, 876–886.
The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents.Crossref | GoogleScholarGoogle Scholar |

Tarasov, V. G. (2006). Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the Western Pacific. Advances in Marine Biology 50, 267–421.
Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the Western Pacific.Crossref | GoogleScholarGoogle Scholar |

Tarasov, V. G., Propp, M. V., Propp, L. N., Blinov, S. V., and Kamenev, G. M. (1986). Shallow-water hydrothermal vents and a unique ecosystem of Kraternaya Caldera (Kurile Islands). Biologiya Morya 2, 72–74.

Tarasov, V. G., Gebruk, A. V., Shulkin, V. M., Kamenev, G. M., Fadeev, V. I., Kosmynin, V. N., Malakhov, V. V., Starynin, D. A., and Obzhirov, A. I. (1999). Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea). Continental Shelf Research 19, 79–116.
Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea).Crossref | GoogleScholarGoogle Scholar |

Tarasov, V. G., Gebruk, A. V., Mironov, A. N., and Moskalev, L. I. (2005). Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology 224, 5–39.
Deep-sea and shallow-water hydrothermal vent communities: two different phenomena?Crossref | GoogleScholarGoogle Scholar |

Tarran, G. A., and Bruun, J. T. (2015). Nanoplankton and picoplankton in the western English Channel: abundance and seasonality from 2007–2013. Progress in Oceanography 137, 446–455.
Nanoplankton and picoplankton in the western English Channel: abundance and seasonality from 2007–2013.Crossref | GoogleScholarGoogle Scholar |

Teixidó, N., Gambi, M. C., Parravacini, V., Kroeker, K., Micheli, F., Villéger, S., and Ballesteros, E. (2018). Functional biodiversity loss along natural CO2 gradients. Nature Communications 9, 5149.
Functional biodiversity loss along natural CO2 gradients.Crossref | GoogleScholarGoogle Scholar |

Tercier-Waeber, M. L., Stoll, S., and Slaveykova, V. (2012). Trace metal behaviour in surface waters: emphasis on dynamic speciation, sorption processes and bioavailability. Archives des Sciences 65, 119–142.

Thomas, W. H., and Seibert, D. L. (1977). Effects of copper on the dominance and the diversity of algae: controlled ecosystem pollution experiment. Bulletin of Marine Science 27, 23–33.

Thomas, W. H., Hollibaugh, J. T., Seibert, D. L. R., and Wallace, G. T. (1980). Toxicity of a mixture of ten metals to phytoplankton. Marine Ecology Progress Series 2, 213–220.
Toxicity of a mixture of ten metals to phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Tortell, P. D., and Price, N. M. (1996). Cadmium toxicity and zinc limitation in centric diatoms of the genus Thalassiosira. Marine Ecology Progress Series 138, 245–254.
Cadmium toxicity and zinc limitation in centric diatoms of the genus Thalassiosira.Crossref | GoogleScholarGoogle Scholar |

Trotter, J., Montagna, P., McCulloch, M., Silenzi, S., Reynaud, S., Mortimer, G., Martin, S., Ferrier-Pagès, C., Gattuso, J. P., and Rodolfo-Metalpa, R. (2011). Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth and Planetary Science Letters 303, 163–173.
Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy.Crossref | GoogleScholarGoogle Scholar |

Van Briesen, J. M., Small, M., Weber, C., and Wilson, J. (2010). Modelling chemical speciation: thermodynamics, kinetics and uncertainty. In ‘Modelling of Pollutants in Complex Environmental Systems, Vol. 2’. (Ed. G. Hanrahan.) Chapt. 4, pp. 133–149. (ILM Publications.)

Vizzini, S., Di Leonardo, R., Costa, V., Tramati, C. D., Luzzu, F., and Mazzola, A. (2013). Trace element bias in the use of CO2 vents as analogues for low pH environments: implications for contamination levels in acidified oceans. Estuarine, Coastal and Shelf Science 134, 19–30.
Trace element bias in the use of CO2 vents as analogues for low pH environments: implications for contamination levels in acidified oceans.Crossref | GoogleScholarGoogle Scholar |

Vraspir, J. M., and Butler, A. (2009). Chemistry of marine ligands and siderophores. Annual Review of Marine Science 1, 43–63.
Chemistry of marine ligands and siderophores.Crossref | GoogleScholarGoogle Scholar |

Wernberg, T., Smale, D. A., and Thomsen, M. S. (2012). A decade of climate change experiments on marine organisms: procedures, patterns and problems. Global Change Biology 18, 1491–1498.
A decade of climate change experiments on marine organisms: procedures, patterns and problems.Crossref | GoogleScholarGoogle Scholar |

Whitby, H., Posacka, A. M., Maldonado, M. T., and Van den Berg, C. M. (2018). Copper-binding ligands in the NE Pacific. Marine Chemistry 204, 36–48.
Copper-binding ligands in the NE Pacific.Crossref | GoogleScholarGoogle Scholar |

Wisshak, M., Schönberg, C. H., Form, A., and Freiwald, A. (2013). Effects of ocean acidification and global warming on reef bioerosion lessons from a clionaid sponge. Aquatic Biology 19, 111–127.
Effects of ocean acidification and global warming on reef bioerosion lessons from a clionaid sponge.Crossref | GoogleScholarGoogle Scholar |

Zeng, X., Chen, X., and Zhuang, J. (2015). The positive relationship between ocean acidification and pollution. Marine Pollution Bulletin 91, 14–21.
The positive relationship between ocean acidification and pollution.Crossref | GoogleScholarGoogle Scholar |

Zitoun, R., Clearwater, S. J., Hassler, C., Thompson, K. J., Albert, A., and Sander, S. G. (2018). Copper toxicity to blue mussel embryos (Mytilus galloprovincialis) – the effect of natural dissolved organic matter on copper toxicity in estuarine waters. The Science of the Total Environment 65, 300–314.

Ziveri, P., Passaro, M., Incarbona, A., Milazzo, M., Rodolfo-Metalpa, R., and Hall-Spencer, J. M. (2014). Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient. The Biological Bulletin 226, 282–290.
Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient.Crossref | GoogleScholarGoogle Scholar |