Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Field observations of the dinoflagellate genus Azadinium and azaspiracid toxins in the south-west Atlantic Ocean

Elena Fabro A B D , Gastón O. Almandoz A B , Bernd Krock C and Urban Tillmann C
+ Author Affiliations
- Author Affiliations

A División Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n (B1900FWA), La Plata, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, 1033 Buenos Aires, Argentina.

C Alfred Wegener Institut-Helmholtz Zentrum für Polar- und Meeresforschung, Chemische Ökologie, Am Handelshafen 12, D-27570 Bremerhaven, Germany.

D Corresponding author. Email: fabroelena@yahoo.com.ar

Marine and Freshwater Research 71(7) 832-843 https://doi.org/10.1071/MF19124
Submitted: 6 April 2019  Accepted: 27 August 2019   Published: 13 November 2019

Abstract

Some dinoflagellate species of the genera Azadinium and Amphidoma (Amphidomataceae) produce azaspiracids (AZA), a group of toxins responsible for gastrointestinal disorders in humans following the consumption of contaminated shellfish. In this study, we investigated the diversity, distribution and abundance of Azadinium and AZA from field plankton samples collected during four oceanographic expeditions that covered an extended area of the Argentine Sea during different seasons. Scanning electron microscopy analyses indicated the presence of five Azadinium species: Az. dexteroporum, Az. luciferelloides, Az. obesum, Az. asperum and Az. cf. poporum. Azadinium-like cells were frequently found and were even an abundant component of plankton assemblages, showing a wide latitudinal distribution, from ~38 to ~55.5°S, and occurring in a wide temperature and salinity range. High cell densities (up to 154 000 cells L–1) occurred in northern slope and external shelf waters during spring. AZA-2 was detected in net samples from the 20- to 200-µm fractions by tandem mass spectrometry–liquid chromatography analysis, suggesting a transfer of AZA through the food web. Our results contribute to the knowledge of the worldwide occurrence of Azadinium species and AZA, and highlight the importance of amphidomatacean species as a potential source of AZA shellfish poisoning in the south-west Atlantic Ocean.

Additional keywords: Azadinium asperum, Azadinium dexteroporum, Azadinium luciferelloides, Azadinium obesum, Azadinium cf. poporum, azaspiracid-2.


References

Acha, E. M., Mianzan, H. W., Guerreroa, R. A., Favero, M., and Bava, J. (2004). Marine fronts at the continental shelves of austral South America: physical and ecological processes. Journal of Marine Systems 44, 83–105.
Marine fronts at the continental shelves of austral South America: physical and ecological processes.Crossref | GoogleScholarGoogle Scholar |

Akselman, R., and Negri, A. (2012). Blooms of Azadinium cf. spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern Atlantic. Harmful Algae 19, 30–38.
Blooms of Azadinium cf. spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Akselman, R., Negri, R. M., and Cozzolino, E. (2014). Azadinium (Amphidomataceae, Dinophyceae) in the Southwest Atlantic: in situ and satellite observations. Revista de Biología Marina y Oceanografía 49, 511–526.
Azadinium (Amphidomataceae, Dinophyceae) in the Southwest Atlantic: in situ and satellite observations.Crossref | GoogleScholarGoogle Scholar |

Álvarez, G., Uribe, E., Ávalos, P., Mariño, C., and Blanco, J. (2010). First identification of azaspiracid and spirolides in Mesodesma donacium and Mulinia edulis from Northern Chile. Toxicon 55, 638–641.
First identification of azaspiracid and spirolides in Mesodesma donacium and Mulinia edulis from Northern Chile.Crossref | GoogleScholarGoogle Scholar | 19631679PubMed |

Antacli, J. C., Silva, R. I., Jaureguizar, A. J., Hernández, D. R., Mendiolar, M., Sabatini, M. E., and Akselman, R. (2018). Phytoplankton and protozooplankton on the southern Patagonian shelf (Argentina, 47°–55°S) in late summer: potentially toxic species and community assemblage structure linked to environmental features. Journal of Sea Research 140, 63–80.
Phytoplankton and protozooplankton on the southern Patagonian shelf (Argentina, 47°–55°S) in late summer: potentially toxic species and community assemblage structure linked to environmental features.Crossref | GoogleScholarGoogle Scholar |

Bacchiocchi, S., Siracusa, M., Ruzzi, A., Gorbi, S., Ercolessi, M., Cosentino, M. A., Ammazzalorso, P., and Orletti, R. (2015). Two-year study of lipophilic marine toxin profile in mussels of the north-central Adriatic Sea: first report of azaspiracids in Mediterranean seafood. Toxicon 108, 115–125.
Two-year study of lipophilic marine toxin profile in mussels of the north-central Adriatic Sea: first report of azaspiracids in Mediterranean seafood.Crossref | GoogleScholarGoogle Scholar | 26455996PubMed |

Balech, E. (1988). Los dinoflagelados del Atlántico Sudoccidental. Publicaciones Especiales. Instituto Español de Oceanografía, Madrid, Spain.

Bogazzi, E., Baldoni, A., Rivas, A., Martos, P., Reta, R., Orensanz, J. M., Lasta, M., and Dell’Arciprete, P. (2005). Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica) and frontal systems in the Southwestern Atlantic. Fisheries Oceanography 14, 359–376.
Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica) and frontal systems in the Southwestern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Braña Magdalena, A., Lehane, M., Krys, S., Fernández, M. L., Furey, A., and James, K. J. (2003). The first identification of azaspiracids in shellfish from France and Spain. Toxicon 42, 105–108.
The first identification of azaspiracids in shellfish from France and Spain.Crossref | GoogleScholarGoogle Scholar |

Campodónico, I., and Guzmán, L. (1974). Marea roja producida por Amphidoma sp. en el Estrecho de Magallanes. Instituto de la Patagonia, Punta Arenas 1/2, 209–213.

Cavalcante, K. P., Susini-Ribeiro, S. M. M., and Tillmann, U. (2018). First detection of Azadinium spp. (Amphidomataceae, Dinophyceae) in tropical coastal waters of Brazil. Brazilian Journal of Botany 41, 209–218.
First detection of Azadinium spp. (Amphidomataceae, Dinophyceae) in tropical coastal waters of Brazil.Crossref | GoogleScholarGoogle Scholar |

Elgarch, A., Vale, P., Rifai, S., and Fassouane, A. (2008). Detection of diarrheic shellfish poisoning and azaspiracid toxins in Moroccan mussels: comparison of the LC-MS method with the commercial immunoassay kit. Marine Drugs 6, 587–594.
Detection of diarrheic shellfish poisoning and azaspiracid toxins in Moroccan mussels: comparison of the LC-MS method with the commercial immunoassay kit.Crossref | GoogleScholarGoogle Scholar | 19172196PubMed |

Gu, H., Luo, Z., Krock, B., Witt, M., and Tillmann, U. (2013). Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea. Harmful Algae 21–22, 64–75.
Morphology, phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the China Sea.Crossref | GoogleScholarGoogle Scholar |

James, K. J., Moroney, C., Roden, C., Satake, M., Yasumoto, T., Lehane, M., and Furey, A. (2003). Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning. Toxicon 41, 145–151.
Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning.Crossref | GoogleScholarGoogle Scholar | 12565733PubMed |

Jauffrais, T., Marcaillou, C., Herrenknecht, C., Truquet, P., Séchet, V., Nicolau, E., Tillmann, U., and Hess, P. (2012). Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum. Toxicon 60, 582–595.
Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum.Crossref | GoogleScholarGoogle Scholar | 22575282PubMed |

Kim, Y., Tillmann, U., Adams, N. G., Krock, B., Stutts, W. L., Deeds, J. R., Han, M. S., and Trainer, V. L. (2017). Identification of Azadinium species and a new azaspiracid in Puget Sound, Washington State, USA. Harmful Algae 68, 152–167.
Identification of Azadinium species and a new azaspiracid in Puget Sound, Washington State, USA.Crossref | GoogleScholarGoogle Scholar |

Krock, B., Tillmann, U., John, U., and Cembella, A. D. (2008). LCMS/MS on board ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. Analytical and Bioanalytical Chemistry 392, 797–803.
LCMS/MS on board ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea.Crossref | GoogleScholarGoogle Scholar | 18584156PubMed |

Krock, B., Tillmann, U., Voß, D., Koch, B. P., Salas, R., Witt, M., Potvin, É., and Jeong, H. J. (2012). New azaspiracids in Amphidomataceae (Dinophyceae). Toxicon 60, 830–839.
New azaspiracids in Amphidomataceae (Dinophyceae).Crossref | GoogleScholarGoogle Scholar | 22643573PubMed |

Krock, B., Tillmann, U., Witt, M., and Gu, H. (2014). Azaspiracid variability of Azadinium poporum (Dinophyceae) from the China Sea. Harmful Algae 36, 22–28.
Azaspiracid variability of Azadinium poporum (Dinophyceae) from the China Sea.Crossref | GoogleScholarGoogle Scholar |

Krock, B., Tillmann, U., Tebben, J., Trefault, N., and Gu, H. (2019). Two novel azaspiracids from Azadinium poporum, and a comprehensive compilation of azaspiracids produced by Amphidomataceae, (Dinophyceae). Harmful Algae 82, 1–8.
Two novel azaspiracids from Azadinium poporum, and a comprehensive compilation of azaspiracids produced by Amphidomataceae, (Dinophyceae).Crossref | GoogleScholarGoogle Scholar | 30928006PubMed |

Lassus, P., Chomérat, N., Nézan, E., and Hess, P. (2016). ‘Toxic and Harmful Microalgae of the World Ocean/Micro-Algues Toxiques et Nuisibles de l’Océan Mondial.’ (International Society for the Study of Harmful Algae (ISSHA) and Intergovernmental Oceanographic Commission of UNESCO: Copenhagen, Denmark.)

Luo, Z., Krock, B., Mertens, K. N., Price, A. M., Turner, R. E., Rabalais, N. N., and Gu, H. (2016). Morphology, molecular phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the Gulf of Mexico. Harmful Algae 55, 56–65.
Morphology, molecular phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 28073547PubMed |

Luo, Z., Krock, B., Mertens, K. N., Nézan, E., Chomérat, N., Bilien, G., Tillmann, U., and Gu, H. (2017). Adding new pieces to the Azadinium (Dinophyceae) diversity and biogeography puzzle: non-toxigenic Azadinium zhuanum sp. nov. from China, toxigenic A. poporum from the Mediterranean, and a non-toxigenic A. dalianense from the French Atlantic. Harmful Algae 66, 65–78.
Adding new pieces to the Azadinium (Dinophyceae) diversity and biogeography puzzle: non-toxigenic Azadinium zhuanum sp. nov. from China, toxigenic A. poporum from the Mediterranean, and a non-toxigenic A. dalianense from the French Atlantic.Crossref | GoogleScholarGoogle Scholar | 28602255PubMed |

Percopo, I., Siano, R., Rossi, R., Soprano, V., Sarno, D., and Zingone, A. (2013). A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov. Journal of Phycology 49, 950–966.
| 27007318PubMed |

Rossi, R., Dell’Aversano, C., Krock, B., Ciminiello, P., Percopo, I., Tillmann, U., Soprano, V., and Zingone, A. (2017). Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach. Analytical and Bioanalytical Chemistry 409, 1121–1134.
Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach.Crossref | GoogleScholarGoogle Scholar | 27822651PubMed |

Satake, M., Ofuji, K., Naoki, H., James, K. J., Furey, A., McMahon, T., Silke, J., and Yasumoto, T. (1998). Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. Journal of the American Society for Mass Spectrometry 120, 9967–9968.

Taleb, H., Vale, P., Amanhir, R., Benhadouch, A., Sagou, R., and Chafik, A. (2006). First detection of azaspirazids in mussels in north west Africa. Journal of Shellfish Research 25, 1067–1070.
First detection of azaspirazids in mussels in north west Africa.Crossref | GoogleScholarGoogle Scholar |

Tillmann, U. (2018). Electron microscopy of a 1991 spring plankton sample from the Argentinean Shelf reveals the presence of four new species of the Amphidomataceae (Dinophyceae). Phycology Research 66, 269–290.
Electron microscopy of a 1991 spring plankton sample from the Argentinean Shelf reveals the presence of four new species of the Amphidomataceae (Dinophyceae).Crossref | GoogleScholarGoogle Scholar |

Tillmann, U., and Akselman, R. (2016). Revisiting the 1991 algal bloom in shelf waters off Argentina: Azadinium luciferelloides sp nov. (Amphidomataceae, Dinophyceae) as the causative species in a diverse community of other amphidomataceans. Phycology Research 64, 160–175.
Revisiting the 1991 algal bloom in shelf waters off Argentina: Azadinium luciferelloides sp nov. (Amphidomataceae, Dinophyceae) as the causative species in a diverse community of other amphidomataceans.Crossref | GoogleScholarGoogle Scholar |

Tillmann, U., Elbrächter, M., Krock, B., John, U., and Cembella, A. (2009). Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. European Journal of Phycology 44, 63–79.
Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins.Crossref | GoogleScholarGoogle Scholar |

Tillmann, U., Elbrächter, M., John, U., Krock, B., and Cembella, A. (2010). Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins. Phycologia 49, 169–182.
Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins.Crossref | GoogleScholarGoogle Scholar |

Tillmann, U., Elbrächter, M., John, U., and Krock, B. (2011). A new non-toxic species in the dinoflagellate genus Azadinium: A. poporum sp. nov. European Journal of Phycology 46, 74–87.
A new non-toxic species in the dinoflagellate genus Azadinium: A. poporum sp. nov.Crossref | GoogleScholarGoogle Scholar |

Tillmann, U., Salas, R., Gottschling, M., Krock, B., O’Driscoll, D., and Elbrächter, M. (2012a). Amphidoma languida sp. nov. (Dinophyceae) reveals a close relationship between Amphidoma and Azadinium. Protist 163, 701–719.
Amphidoma languida sp. nov. (Dinophyceae) reveals a close relationship between Amphidoma and Azadinium.Crossref | GoogleScholarGoogle Scholar | 22130577PubMed |

Tillmann, U., Soehner, S., Nézan, E., and Krock, B. (2012b). First record of Azadinium from the Shetland Islands including the description of A. polongum sp. nov. Harmful Algae 20, 142–155.
First record of Azadinium from the Shetland Islands including the description of A. polongum sp. nov.Crossref | GoogleScholarGoogle Scholar |

Tillmann, U., Gottschling, M., Nézan, E., Krock, B., and Bilien, G. (2014a). Morphological and molecular characterization of three new Azadinium species (Amphidomataceae, Dinophyceae) from the Irminger Sea. Protist 165, 417–444.
Morphological and molecular characterization of three new Azadinium species (Amphidomataceae, Dinophyceae) from the Irminger Sea.Crossref | GoogleScholarGoogle Scholar | 24908198PubMed |

Tillmann, U., Salas, R., Jauffrais, T., Hess, P., and Silke, J. (2014b). AZA: the producing organisms – biology and trophic transfer. In ‘Seafood and Freshwater Toxins, Pharmacology, Physiology, and Detection’, 3rd edn. (Ed. L. M. Botana.) pp. 773–798. (Taylor & Francis: Boca Raton, FL, USA.)

Tillmann, U., Gottschling, M., Nézan, E., and Krock, B. (2015). First record of Azadinium dexteroporum and Amphidoma languida (Amphidomataceae, Dinophyceae) from the Irminger Sea off Iceland. Marine Biodiversity 8, 1–11.

Tillmann, U., Borel, C. M., Barrera, F., Lara, R., Krock, B., Almandoz, G. O., Witt, M., and Trefault, N. (2016). Azadinium poporum from the Argentine continental shelf, Southwestern Atlantic, produces azaspiracid-2 and azaspiracid-2 phosphate. Harmful Algae 51, 40–55.
Azadinium poporum from the Argentine continental shelf, Southwestern Atlantic, produces azaspiracid-2 and azaspiracid-2 phosphate.Crossref | GoogleScholarGoogle Scholar | 28003061PubMed |

Tillmann, U., Gottschling, M., Guinder, V., and Krock, B. (2018a). Amphidoma parvula (Amphidomataceae), a new planktonic dinophyte from the Argentine Sea. European Journal of Phycology 53, 14–28.
Amphidoma parvula (Amphidomataceae), a new planktonic dinophyte from the Argentine Sea.Crossref | GoogleScholarGoogle Scholar |

Tillmann, U., Edvardsen, B., Krock, B., Smith, K. F., Paterson, R. F., and Voß, D. (2018b). Diversity, distribution, and azaspiracids of Amphidomataceae (Dinophyceae) along the Norwegian Coast. Harmful Algae 80, 15–34.
Diversity, distribution, and azaspiracids of Amphidomataceae (Dinophyceae) along the Norwegian Coast.Crossref | GoogleScholarGoogle Scholar | 30502808PubMed |

Tillmann, U., Gottschling, M., Krock, B., Smith, K. F., and Guinder, V. (2019). High abundance of Amphidomataceae (Dinophyceae) during the 2015 spring bloom of the Argentinean Shelf and a new, non-toxigenic ribotype of Azadinium spinosum. Harmful Algae 84, 244–260.
High abundance of Amphidomataceae (Dinophyceae) during the 2015 spring bloom of the Argentinean Shelf and a new, non-toxigenic ribotype of Azadinium spinosum.Crossref | GoogleScholarGoogle Scholar | 31128809PubMed |

Trainer, V. L., Moore, L., Bill, B. D., Adams, N. G., Harrington, N., Borchert, J., da Silva, D. A., and Eberhart, B. T. L. (2013). Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington state. Marine Drugs 11, 1815–1835.
Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington state.Crossref | GoogleScholarGoogle Scholar | 23760013PubMed |

Turner, A. D., and Goya, A. B. (2015). Occurrence and profiles of lipophilic toxins in shellfish harvested from Argentina. Toxicon 102, 32–42.
Occurrence and profiles of lipophilic toxins in shellfish harvested from Argentina.Crossref | GoogleScholarGoogle Scholar | 26003796PubMed |

Twiner, M., Hess, P., and Doucette, G. J. (2014). Azaspiracids: toxicology, pharmacology, and risk assessment. In ‘Seafood and Freshwater Toxins’. (Ed. L. M. Botana) pp. 823–855. (CRC Press: Boca Raton, FL, USA.)

Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Internationale Vereinigung für theoretische und angewandte Limnologie 9, 1–38.

Vale, P., Biré, R., and Hess, P. (2008). Confirmation by LC-MS/MS of azaspiracids in shellfish from the Portuguese north-western coast. Toxicon 51, 1449–1456.
Confirmation by LC-MS/MS of azaspiracids in shellfish from the Portuguese north-western coast.Crossref | GoogleScholarGoogle Scholar | 18471847PubMed |

Yao, J., Tan, Z., Zhou, D., Guo, M., Xing, L., and Yang, S. (2010). Determination of azaspiracid-1 in shellfishes by liquid chromatography with tandem mass spectrometry. Se Pu 28, 363–367.
Determination of azaspiracid-1 in shellfishes by liquid chromatography with tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 20712117PubMed |

Yasumoto, T. (2001). The chemistry and biological function of natural marine toxins. Chemical Record 1, 228–242.
The chemistry and biological function of natural marine toxins.Crossref | GoogleScholarGoogle Scholar | 11895121PubMed |