Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Seasonal variations in plankton trophic structure under highly eutrophic conditions

Mariana Guenther A C , Alejandro E. S. F. Costa B , Valdylene T. Pessoa-Fidelis B and Sigrid Neumann-Leitão B
+ Author Affiliations
- Author Affiliations

A Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310 Santo Amaro, Recife, PE 50100-130, Brazil.

B Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil.

C Corresponding author. Email address: mariana.guenther@upe.br

Marine and Freshwater Research 71(6) 641-652 https://doi.org/10.1071/MF18449
Submitted: 23 November 2018  Accepted: 20 June 2019   Published: 26 September 2019

Abstract

The plankton trophic structure of a hypereutrophic tropical estuarine system was evaluated in the dry and wet seasons, as well as during the dry–wet transition period, over 1 year. Correlations between micro- and mesozooplankton abundance and composition and both size-fractioned phytoplankton biomass and abiotic variables were investigated in order to understand seasonal variations in plankton interactions and provide a conceptual trophic model for the plankton community. Rainfall is the main environmental forcing factor for this system, and the plankton community responded accordingly, with different structures during each season sampled. The resulting trophic model shows a multivorous food web, where both longer microbial and shorter herbivore food webs occur simultaneously. Microzooplankton play a crucial role in this ecosystem, linking both small and large phytoplankton to the mesozooplankton. These results have important implications for estuarine management practices, particularly under highly eutrophic conditions.

Additional keywords: estuaries, mesozooplankton, microzooplankton, size-fractioned phytoplankton, trophic models, tropical.


References

Albright, L. J., Sherr, E. B., Sherr, B. F., and Fallon, R. D. (1987). Grazing of ciliated protozoa on free and particle-attached bacteria. Marine Ecology Progress Series 38, 125–129.
Grazing of ciliated protozoa on free and particle-attached bacteria.Crossref | GoogleScholarGoogle Scholar |

Albuquerque de Oliveira, P. J., Alves Coelho, P., and da Silva Castiglioni, D. S. (2013). Population biology of Ucides cordatus (Linnaeus, 1763) (Crustacea, Brachyura, Ucididae) from two tropical mangroves sites in northeast coast of Brazil. Pan-American Journal of Aquatic Sciences 8, 89–103.

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.

Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253.
Distance-based tests for homogeneity of multivariate dispersions.Crossref | GoogleScholarGoogle Scholar | 16542252PubMed |

Anderson, T. R., and Ducklow, H. W. (2001). Microbial loop carbon cycling in ocean environments studied using a simple steady-state model. Aquatic Microbial Ecology 26, 37–49.
Microbial loop carbon cycling in ocean environments studied using a simple steady-state model.Crossref | GoogleScholarGoogle Scholar |

Aquino, E. P., Borges, G. C. P., Silva, M. H., Passavante, J. Z. O., and Cunha, M. G. G. S. (2014). Microphytoplankton community and environmental variables in an urban eutrophic estuary (Capibaribe River, Northeast Brazil). Pan-American Journal of Aquatic Sciences 9, 267–277.

Araújo, M. S. L. C. d., Negromonte, A. O., and Barreto, A. V. (2011). Reproductive period of the swimming crab Callinectes danae at the Santa Cruz Channel, a highly productive tropical estuary in Brazil. Nauplius 19, 155–162.
Reproductive period of the swimming crab Callinectes danae at the Santa Cruz Channel, a highly productive tropical estuary in Brazil.Crossref | GoogleScholarGoogle Scholar |

Araujo, M., Noriega, C., Veleda, D., and Lefèvre, N. (2013). Nutrient input and CO2 flux of a tropical coastal fluvial system with high population density in the northeast region of Brazil. Journal of Water Resource and Protection 5, 362–375.
Nutrient input and CO2 flux of a tropical coastal fluvial system with high population density in the northeast region of Brazil.Crossref | GoogleScholarGoogle Scholar |

Azam, F., and Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews. Microbiology 5, 782–791.
Microbial structuring of marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 17853906PubMed |

Barreiro, A., Guisande, C., Frangópulos, M., González-Fernández, A., Muñoz, S., Pérez, D., Magadán, S., Maneiro, I., Riveiro, I., and Iglesias, P. (2006). Feeding strategies of the copepod Acartia clausi on single and mixed diets of toxic and non-toxic strains of the dinoflagellate Alexandrium minutum. Marine Ecology Progress Series 316, 115–125.
Feeding strategies of the copepod Acartia clausi on single and mixed diets of toxic and non-toxic strains of the dinoflagellate Alexandrium minutum.Crossref | GoogleScholarGoogle Scholar |

Buskey, E. J. (1997). Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum. Marine Ecology Progress Series 153, 77–89.
Behavioral components of feeding selectivity of the heterotrophic dinoflagellate Protoperidinium pellucidum.Crossref | GoogleScholarGoogle Scholar |

Calbet, A. (2008). The trophic roles of microzooplankton in marine systems. ICES Journal of Marine Science 65, 325–331.
The trophic roles of microzooplankton in marine systems.Crossref | GoogleScholarGoogle Scholar |

Calbet, A., Landry, M. R., and Scheinberg, R. D. (2000). Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Marine Ecology Progress Series 193, 75–84.
Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock.Crossref | GoogleScholarGoogle Scholar |

Chang, K. H., Doi, H., Nishibe, Y., Nam, G. S., and Nakano, S. I. (2014). Feeding behavior of the copepod Temora turbinata: clearance rate and prey preference on the diatom and microbial food web components in coastal area. Journal of Ecology and Environment 37, 225–229.
Feeding behavior of the copepod Temora turbinata: clearance rate and prey preference on the diatom and microbial food web components in coastal area.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.
Non-parametric multivariate analyses of changes in community structure.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Warwick, R. M. (2001). ‘Change in Marine Communities: An Approach to Statistical Analysis and Interpretation.’ (Plymouth Marine Laboratory: Plymouth, UK.)

Conley, W. J., and Turner, J. T. (1985). Omnivory by the coastal marine copepods Centropages hamatus and Labidocera aestiva. Marine Ecology Progress Series 21, 113–120.
Omnivory by the coastal marine copepods Centropages hamatus and Labidocera aestiva.Crossref | GoogleScholarGoogle Scholar |

Crisp, D. J., and Spencer, C. P. (1958). The control of the hatching process in barnacles. Proceedings of the Royal Society of London – B. Biological Sciences 149, 278–299.
The control of the hatching process in barnacles.Crossref | GoogleScholarGoogle Scholar | 13614390PubMed |

Crump, B. C., Ducklow, H. W., and Hobbie, J. E. (2012). Estuarine microbial food webs. In ‘Estuarine Ecology’. (Eds J. W. Day, B. C. Crump, W. M. Kemp, and A. Yáñez-Arancibia.) pp. 263–284. (Wiley-Blackwell: New York, NY, USA.)

da Silva Castiglioni, D., Albuquerque de Oliveira, P. J., Soares da Silva, J., and Alves Coelho, P. (2011). Population dynamics of Sesarma rectum (Crustacea: Brachyura: Grapsidae) in the Ariquindá River mangrove, north-east of Brazil. Journal of the Marine Biological Association of the United Kingdom 91, 1395–1401.
Population dynamics of Sesarma rectum (Crustacea: Brachyura: Grapsidae) in the Ariquindá River mangrove, north-east of Brazil.Crossref | GoogleScholarGoogle Scholar |

Dagg, M., Strom, S., and Liu, H. (2009). High feeding rates on large particles by Neocalanus flemingeri and N. plumchrus, and consequences for phytoplankton community structure in the subarctic Pacific Ocean. Deep-sea Research – I. Oceanographic Research Papers 56, 716–726.
High feeding rates on large particles by Neocalanus flemingeri and N. plumchrus, and consequences for phytoplankton community structure in the subarctic Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

de Oliveira Dias, C. (1999). Morphological abnormalities of Acartia lilljeborgi (Copepoda, Crustacea) in the Espirito Santo Bay (ES-Brazil). Hydrobiologia 394, 249–251.
Morphological abnormalities of Acartia lilljeborgi (Copepoda, Crustacea) in the Espirito Santo Bay (ES-Brazil).Crossref | GoogleScholarGoogle Scholar |

Dolan, J. (2010). Morphology and ecology in tintinnid ciliates of the marine plankton: correlates of lorica dimensions. Acta Protozoologica 49, 235–244.

Dolan, J. R., and Pierce, R. W. (2012). Diversity and distributions of tintinnids. In ‘The Biological and Ecology of Tintinnid Ciliates: Models for Marine Plankton’. (Eds D. J. S. Montagnes, S. Agatha, D. W. Coats, D. K. Stoecker, and J. R. Dolan.) pp. 216–243. (Wiley-Blackwell: Chichester, UK.)

Domingues, E. C., Schettini, C. A. F., Truccolo, E. C., and Oliveira Filho, J. C. (2017). Hydrography and currents on the Pernambuco Continental Shelf. Brazilian Journal of Water Resources 22, e43.
Hydrography and currents on the Pernambuco Continental Shelf.Crossref | GoogleScholarGoogle Scholar |

Fenchel, T. (1980). Suspension feeding in ciliated protozoa: functional response and particle size selection. Microbial Ecology 6, 1–11.
Suspension feeding in ciliated protozoa: functional response and particle size selection.Crossref | GoogleScholarGoogle Scholar | 24226830PubMed |

Fenchel, T. (1986) Protozoan filter feeding. In ‘Progress in Protistology. Volume 1’. (Eds J. O. Corliss and D. J. Patterson.) pp. 65–113. (Biopress Ltd: Bristol, UK)

Fenchel, T. (1987). ‘Ecology of Protozoa: the Biology of Freeliving Phagotrophic Protists.’ (Springer-Verlag: Berlin, Germany.)

Fernandes, L. F. (2004a). Tintininos (Ciliophora, Tintinnina) de águas subtropicais na região Sueste-Sul do Brasil. I. Familias Codonellidae, Codonellopsidae, Coxliellida, Cyttarocylidae, Epiplocylidae, Petalotrichidae, Ptychocylidae, Tintinnididae e Undellidae. Revista Brasileira de Zoologia 21, 551–576.
Tintininos (Ciliophora, Tintinnina) de águas subtropicais na região Sueste-Sul do Brasil. I. Familias Codonellidae, Codonellopsidae, Coxliellida, Cyttarocylidae, Epiplocylidae, Petalotrichidae, Ptychocylidae, Tintinnididae e Undellidae.Crossref | GoogleScholarGoogle Scholar |

Fernandes, L. F. (2004b). Tintininos (Ciliophora, Tintinnina) de águas subtropicais na região Sueste-Sul do Brasil. II. Familias Dictyocistidae, Rhabdonellidae, Tintinnidae e Xystonellidae. Revista Brasileira de Zoologia 21, 605–628.
Tintininos (Ciliophora, Tintinnina) de águas subtropicais na região Sueste-Sul do Brasil. II. Familias Dictyocistidae, Rhabdonellidae, Tintinnidae e Xystonellidae.Crossref | GoogleScholarGoogle Scholar |

Gaeta, S. A., Abe, D. S., Susini, S. M., Lopes, R. M., and Metzler, P. M. (1990). Produtividade primaria, plancton e covariaveis ambientais no Canal de Sao Sebastiao durante o outono. Revista Brasileira de Biologia 50, 963–974.

González, H., and Smetacek, V. (1994). The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material. Marine Ecology Progress Series 113, 233–246.
The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material.Crossref | GoogleScholarGoogle Scholar |

Griffiths, F., Fleminger, A., Kimor, B., and Vanucci, M. (1976). Shipboard and curation techniques. In ‘Zooplankton Fixation and Preservation – Monographs on Oceanographic Methodology’. (Ed. H. Steedman.) pp. 17–33. (UNESCO: Paris, France.)

Guenther, M., Gonzalez-Rodriguez, E., Carvalho, W. F., Rezende, C. E., Mugrabe, G., and Valentin, J. L. (2008a). Plankton trophic structure and particulate organic carbon production during a coastal downwelling–upwelling cycle. Marine Ecology Progress Series 363, 109–119.
Plankton trophic structure and particulate organic carbon production during a coastal downwelling–upwelling cycle.Crossref | GoogleScholarGoogle Scholar |

Guenther, M., Paranhos, R., Rezende, C. E., Gonzalez-Rodriguez, E., and Valentin, J. L. (2008b). Dynamics of bacterial carbon metabolism at the entrance of a tropical eutrophic bay influenced by tidal oscillation. Aquatic Microbial Ecology 50, 123–133.
Dynamics of bacterial carbon metabolism at the entrance of a tropical eutrophic bay influenced by tidal oscillation.Crossref | GoogleScholarGoogle Scholar |

Guenther, M., Lima, I., Mugrabe, G., Tenenbaum, D. R., Gonzalez-Rodriguez, E., and Valentin, J. L. (2012). Small time scale plankton structure variations at the entrance of a tropical eutrophic bay (Guanabara Bay, Brazil). Brazilian Journal of Oceanography 60, 405–414.
Small time scale plankton structure variations at the entrance of a tropical eutrophic bay (Guanabara Bay, Brazil).Crossref | GoogleScholarGoogle Scholar |

Guenther, M., Araújo, M., Flores-Montes, M., Gonzalez-Rodriguez, E., and Neumann-Leitao, S. (2015). Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary. Marine Pollution Bulletin 91, 537–547.
Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary.Crossref | GoogleScholarGoogle Scholar | 25444618PubMed |

Guenther, M., Araújo, M., Noriega, C., Flores-Montes, M., Gonzalez-Rodriguez, E., and Neumann-Leitão, S. (2017a). Plankton carbon metabolism and air–water CO2 fluxes at a hypereutrophic tropical estuary Marine Ecology 38, e12423.
Plankton carbon metabolism and air–water CO2 fluxes at a hypereutrophic tropical estuaryCrossref | GoogleScholarGoogle Scholar |

Guenther, M., Gonzalez-Rodriguez, E., Flores-Montes, M., Araujo, M., and Neumann-Leitão, S. (2017b). High bacterial carbon demand and low growth efficiency at a tropical hypereutrophic estuary: importance of dissolved organic matter remineralization. Brazilian Journal of Oceanography 65, 382–391.
High bacterial carbon demand and low growth efficiency at a tropical hypereutrophic estuary: importance of dissolved organic matter remineralization.Crossref | GoogleScholarGoogle Scholar |

Hada, Y. (1938). Studies on the Tintinnoinea from the Western Tropical Pacific. Journal of the Faculty of Science Hokkaido Imperial University, Series 6. Zoology 6, 87–190.

Jacobson, D. M., and Anderson, D. M. (1986). Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms. Journal of Phycology 22, 249–258.
Thecate heterotrophic dinoflagellates: feeding behavior and mechanisms.Crossref | GoogleScholarGoogle Scholar |

Jeong, H. J., Yoo, Y. D., Kim, S. T., and Kang, N. S. (2004). Feeding by the heterotrophic dinoflagellate Protoperidinium bipes on the diatom Skeletonema costatum. Aquatic Microbial Ecology 36, 171–179.
Feeding by the heterotrophic dinoflagellate Protoperidinium bipes on the diatom Skeletonema costatum.Crossref | GoogleScholarGoogle Scholar |

Jeong, H. J., Yoo, Y. D., Seong, K. A., Kim, J. H., Park, J. Y., Kim, S., Lee, S. H., Ha, J. H., and Yih, W. H. (2005). Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquatic Microbial Ecology 38, 249–257.
Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact.Crossref | GoogleScholarGoogle Scholar |

Jonsson, P. R., and Tiselius, P. (1990). Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Marine Ecology Progress Series 60, 35–44.
Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates.Crossref | GoogleScholarGoogle Scholar |

Jorgensen, B. B., and Richardson, K. (Eds) (1996). ‘Eutrophication in Coastal Marine Systems. Coastal and Estuarine Studies, Vol. 52.’ (American Geophysical Union: Washington DC, USA.)10.1029/CE052

Kleppel, G. S. (1993). On the diets of calanoid copepods. Marine Ecology Progress Series 99, 183–195.
On the diets of calanoid copepods.Crossref | GoogleScholarGoogle Scholar |

Kleppel, G. S., Holliday, D. V., and Pieper, R. E. (1991). Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnology and Oceanography 36, 172–178.
Trophic interactions between copepods and microplankton: a question about the role of diatoms.Crossref | GoogleScholarGoogle Scholar |

Kofoid, C. A., and Campbell, A. S. (1939). The Tintinnoinea of the Eastern Tropical Pacific. Bulletin of the Museum of Comparative Zoology at Harvard College 84, 1–473.

Köppen, W. (1900). Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geographische Zeitschrift 6, 593–611.

Landry, M. R. (1978). Predatory feeding behavior of a marine copepod, Labidocera trispinosa. Limnology and Oceanography 23, 1103–1113.
Predatory feeding behavior of a marine copepod, Labidocera trispinosa.Crossref | GoogleScholarGoogle Scholar |

Landry, M. R., and Kirchman, D. L. (2002). Microbial community structure and variability in the tropical Pacific. Deep-sea Research – II. Topical Studies in Oceanography 49, 2669–2693.
Microbial community structure and variability in the tropical Pacific.Crossref | GoogleScholarGoogle Scholar |

Landry, M. R., Decima, M., Simmons, M. P., Hannides, C. C. S., and Daniels, E. (2008). Mesozooplankton biomass and grazing responses to Cyclone Opal, a subtropical mesoscale eddy. Deep-sea Research – II. Topical Studies in Oceanography 55, 1378–1388.
Mesozooplankton biomass and grazing responses to Cyclone Opal, a subtropical mesoscale eddy.Crossref | GoogleScholarGoogle Scholar |

Lawrence, J. R., and Snyder, R. A. (1998). Feeding behavior and grazing impacts of a Euplotes sp. on attached bacteria. Canadian Journal of Microbiology 44, 623–629.
Feeding behavior and grazing impacts of a Euplotes sp. on attached bacteria.Crossref | GoogleScholarGoogle Scholar |

Legendre, L., and Rassoulzadegan, F. (1995). Plankton and nutrients dynamics in marine waters. Ophelia 41, 153–172.
Plankton and nutrients dynamics in marine waters.Crossref | GoogleScholarGoogle Scholar |

Legendre, L., and Rivkin, R. B. (2002). Pelagic food webs: responses to environmental processes and effects on the environment. Ecological Research 17, 143–149.
Pelagic food webs: responses to environmental processes and effects on the environment.Crossref | GoogleScholarGoogle Scholar |

Lue, K. A., and Webber, M. K. (2014). A new comparative study of zooplankton from oceanic, shelf and harbour waters, south-east coast, Jamaica. Zoological Studies 53, 18.
A new comparative study of zooplankton from oceanic, shelf and harbour waters, south-east coast, Jamaica.Crossref | GoogleScholarGoogle Scholar |

Marañón, E., Holligan, P. M., Barciela, R., Gonzalez, N., Mourino, B., Pazo, M. J., and Varela, M. (2001). Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Marine Ecology Progress Series 216, 43–56.
Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments.Crossref | GoogleScholarGoogle Scholar |

Marasović, I. (1989). Encystment and excystment of Gonyaulax polyedra during a red tide. Estuarine, Coastal and Shelf Science 28, 35–41.
Encystment and excystment of Gonyaulax polyedra during a red tide.Crossref | GoogleScholarGoogle Scholar |

McKinnon, A. D., and Klumpp, D. W. (1997). Mangrove zooplankton of north Queensland, Australia. Hydrobiologia 362, 145–160.
Mangrove zooplankton of north Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Nakamura, Y., and Turner, J. T. (1997). Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates? Journal of Plankton Research 19, 1275–1288.
Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates?Crossref | GoogleScholarGoogle Scholar |

Nascimento-Vieira, D. A., and Sant’Anna, E. M. E. (1987). Composição do Zooplâncton no Estuário do Rio Timbó (Pernambuco-Brasil). Trabalhos Oceanográficos 20, 77–98.
Composição do Zooplâncton no Estuário do Rio Timbó (Pernambuco-Brasil).Crossref | GoogleScholarGoogle Scholar |

Naustvoll, L.-J. (2000). Prey size spectra and food preferences in thecate heterotrophic dinoflagellates. Phycologia 39, 187–198.
Prey size spectra and food preferences in thecate heterotrophic dinoflagellates.Crossref | GoogleScholarGoogle Scholar |

Olseng, C. D., Naustvoll, L.-J., and Paasche, E. (2002). Grazing by the heterotrophic dinoflagellate Protoperidinium steinii on a Ceratium bloom. Marine Ecology Progress Series 225, 161–167.
Grazing by the heterotrophic dinoflagellate Protoperidinium steinii on a Ceratium bloom.Crossref | GoogleScholarGoogle Scholar |

Paffenhöfer, G. A., Strickler, J. R., and Alcaraz, M. (1982). Suspension-feeding by herbivorous calanoid copepods: a cinematographic study. Marine Biology 67, 193–199.
Suspension-feeding by herbivorous calanoid copepods: a cinematographic study.Crossref | GoogleScholarGoogle Scholar |

Parsons, T., Maita, Y., and Lalli, C. (1984). ‘A Manual of Chemical and Biological Methods for Seawater Analysis.’ (Pergamon Press: Oxford, UK.)

Perez, M., and Sulkin, S. (2005). Palatability of autotrophic dinoflagellates to newly hatched larval crabs. Marine Biology Research 146, 771–780.
Palatability of autotrophic dinoflagellates to newly hatched larval crabs.Crossref | GoogleScholarGoogle Scholar |

Rothenberger, M., Swaffield, T., Calomeni, A., and Cabrey, C. (2014). Multivariate analysis of water quality and plankton assemblages in an urban estuary. Estuaries and Coasts 37, 695–711.
Multivariate analysis of water quality and plankton assemblages in an urban estuary.Crossref | GoogleScholarGoogle Scholar |

Rubin, H. A., and Lee, J. J. (1976). Informational energy flow as an aspect of the ecological efficiency of marine ciliates. Journal of Theoretical Biology 62, 69–91.
Informational energy flow as an aspect of the ecological efficiency of marine ciliates.Crossref | GoogleScholarGoogle Scholar | 825683PubMed |

Santiago, M. F., Goncalves da Silva-Cunha, M. G., Neumann-Leitao, S., Pereira da Costa, K. M., Borges Palmeira, G. C., Porto Neto, F. F., and Nunes, F. S. (2010). Phytoplankton dynamics in a highly eutrophic estuary in tropical Brazil. Brazilian Journal of Oceanography 58, 189–205.
Phytoplankton dynamics in a highly eutrophic estuary in tropical Brazil.Crossref | GoogleScholarGoogle Scholar |

Schwamborn, R., Ekau, W., Silva, A. P., Silva, T. A., and Saint-Paul, U. (1999). The contribution of estuarine decapod larvae to marine zooplankton communities in north-east Brazil. Archiv für Fischerei- und Meeresforschung 47, 167–182.

Schwamborn, R., Bonecker, S. L. C., Galvão, I. B., Silva, T. A., and Neumann-Leitão, S. (2004). Mesozooplankton grazing under conditions of extreme eutrophication in Guanabara Bay, Brazil. Journal of Plankton Research 26, 983–992.
Mesozooplankton grazing under conditions of extreme eutrophication in Guanabara Bay, Brazil.Crossref | GoogleScholarGoogle Scholar |

Schwamborn, R., Ekau, W., Silva, A. P., Schwamborn, S. H. L., Silva, T. A., Neumann-Leitao, S., and Saint-Paul, U. (2006). Ingestion of large centric diatoms, mangrove detritus, and zooplankton by zoeae of Aratus pisonii (Crustacea: Brachyura: Grapsidae). Hydrobiologia 560, 1–13.
Ingestion of large centric diatoms, mangrove detritus, and zooplankton by zoeae of Aratus pisonii (Crustacea: Brachyura: Grapsidae).Crossref | GoogleScholarGoogle Scholar |

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal 27, 379–423.
A mathematical theory of communication.Crossref | GoogleScholarGoogle Scholar |

Shaw, G. R., Moore, D. P., and Garnett, C. (2009). Eutrophication and algal blooms. In ‘Environmental and Ecological Chemistry. Volume II. Encyclopedia of Life Support Systems’. (Ed. A. Sabljic.) pp. 298–326. (UNESCO: Oxford, UK.)

Sherr, E. B., and Sherr, B. F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81, 293–308.
Significance of predation by protists in aquatic microbial food webs.Crossref | GoogleScholarGoogle Scholar | 12448728PubMed |

Shimizu, Y., Alam, M., Oshima, Y., and Fallon, W. E. (1975). Presence of four toxins in red tide infested clams and cultured Gonyaulax tamarensis cells. Biochemical and Biophysical Research Communications 66, 731–737.
Presence of four toxins in red tide infested clams and cultured Gonyaulax tamarensis cells.Crossref | GoogleScholarGoogle Scholar | 1237301PubMed |

Smith, V. H., Tilman, G. D., and Nekola, J. C. (1999). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100, 179–196.
Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar | 15093117PubMed |

Starr, M., Himmelman, J. H., and Therriault, J.-C. (1991). Coupling of nauplii release in barnacles with phytoplankton blooms: a parallel strategy to that of spawning in urchins and mussels. Journal of Plankton Research 13, 561–571.
Coupling of nauplii release in barnacles with phytoplankton blooms: a parallel strategy to that of spawning in urchins and mussels.Crossref | GoogleScholarGoogle Scholar |

Stoecker, D. K., Gifford, D. J., and Putt, M. (1994). Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Marine Ecology Progress Series 110, 293–299.
Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation.Crossref | GoogleScholarGoogle Scholar |

Stone, C. J. (1988). Test of sequential feeding regimes for larvae of Elminius modestus Darwin (Cirripedia: Balanomorpha). Journal of Experimental Marine Biology and Ecology 115, 41–51.
Test of sequential feeding regimes for larvae of Elminius modestus Darwin (Cirripedia: Balanomorpha).Crossref | GoogleScholarGoogle Scholar |

Stone, C. J. (1989). A comparison of algal diets for cirripede nauplii. Journal of Experimental Marine Biology and Ecology 132, 17–40.
A comparison of algal diets for cirripede nauplii.Crossref | GoogleScholarGoogle Scholar |

Syberg-Olsen, M. J., Irwin, N. A. T., Vannini, C., Erra, F., Di Giuseppe, G., Boscaro, V., and Keeling, P. J. (2016). Biogeography and character evolution of the ciliate genus Euplotes (Spirotrichea, Euplotia), with description of Euplotes curdsi sp. nov. PLoS One 11, e0165442.
Biogeography and character evolution of the ciliate genus Euplotes (Spirotrichea, Euplotia), with description of Euplotes curdsi sp. nov.Crossref | GoogleScholarGoogle Scholar | 27828996PubMed |

Tundisi, J., and Matsumura-Tundisi, T. (1968). Plankton studies in a mangrove environment. V. Salinity tolerances of some planktonic crustaceans. Boletim do Instituto Oceanográfico 17, 57–65.
Plankton studies in a mangrove environment. V. Salinity tolerances of some planktonic crustaceans.Crossref | GoogleScholarGoogle Scholar |

Tundisi, J., Matsumura-Tundisi, T., and Kutner, M. B. (1973). Plankton studies in a mangrove environment. VIII. Further investigations on primary production, standing-stock of phyto- and zooplankton and some environmental factors. Internationale Revue der Gesamten Hydrobiologie 58, 925–940.
Plankton studies in a mangrove environment. VIII. Further investigations on primary production, standing-stock of phyto- and zooplankton and some environmental factors.Crossref | GoogleScholarGoogle Scholar |

Turner, J. T. (1986). Zooplankton feeding ecology: contents of fecal pellets of the cyclopoid copepods Oncaea venusta, Corycaeus amazonicus, Oithona plumifera, and O. simplex from the northern Gulf of Mexico. Marine Ecology 7, 289–302.
Zooplankton feeding ecology: contents of fecal pellets of the cyclopoid copepods Oncaea venusta, Corycaeus amazonicus, Oithona plumifera, and O. simplex from the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Turner, J. T., Levinsen, H., Nielsen, T. G., and Hansen, B. W. (2001). Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Marine Ecology Progress Series 221, 209–219.
Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland.Crossref | GoogleScholarGoogle Scholar |

Uchima, M., and Hirano, R. (1986). Food of Oithona davisae (Copepoda: Cyclopoida) and the effect of food concentration at first feeding on the larval growth. Bulletin of the Plankton Society of Japan 33, 21–28.

Wandeness, A. P., Mattos, M. A. R., and Nogueira, C. S. R. (1997). Copepoda (Crustacea) of Guanabara Bay, RJ. I. Specific composition. Arquivos de Biologia e Tecnologia 40, 377–381.

White, A. W. (1981). Sensitivity of marine fishes to toxins from the red-tide dinoflagellate Gonyaulax excavata and implications for fish kills. Marine Biology 65, 255–260.
Sensitivity of marine fishes to toxins from the red-tide dinoflagellate Gonyaulax excavata and implications for fish kills.Crossref | GoogleScholarGoogle Scholar |

Wilks, S. A., and Sleigh, M. A. (1998). Grazing rates in Euplotes mutabilis: relationship between particle size and concentration. Microbial Ecology 36, 165–174.
Grazing rates in Euplotes mutabilis: relationship between particle size and concentration.Crossref | GoogleScholarGoogle Scholar | 9688778PubMed |