Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Distribution and conservation of known secondary metabolite biosynthesis gene clusters in the genomes of geographically diverse Microcystis aeruginosa strains

Leanne A. Pearson A B , Nicholas D. Crosbie A and Brett A. Neilan B C
+ Author Affiliations
- Author Affiliations

A Applied Research, Melbourne Water Corporation, 990 La Trobe Street, Docklands, Vic. 3008, Australia.

B School of Environmental and Life Sciences, SR233, Social Sciences Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.

C Corresponding author. Email: brett.neilan@newcastle.edu.au

Marine and Freshwater Research 71(5) 701-716 https://doi.org/10.1071/MF18406
Submitted: 23 October 2018  Accepted: 12 July 2019   Published: 17 October 2019

Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND

Abstract

The cyanobacterium Microcystis aeruginosa has been linked to toxic blooms worldwide. In addition to producing hepatotoxic microcystins, many strains are capable of synthesising a variety of biologically active compounds, including protease and phosphatase inhibitors, which may affect aquatic ecosystems and pose a risk to their use. This study explored the distribution, composition and conservation of known secondary metabolite (SM) biosynthesis gene clusters in the genomes of 27 M. aeruginosa strains isolated from six different Köppen–Geiger climates. Our analysis identified gene clusters with significant homology to nine SM biosynthesis gene clusters spanning four different compound classes: non-ribosomal peptides, hybrid polyketide–non-ribosomal peptides, cyanobactins and microviridins. The aeruginosin, microviridin, cyanopeptolin and microcystin biosynthesis gene clusters were the most frequently observed, but hybrid polyketide–non-ribosomal peptide biosynthesis clusters were the most common class overall. Although some biogeographic relationships were observed, taxonomic markers and geography were not reliable indicators of SM biosynthesis cluster distribution, possibly due to previous genetic deletions or horizontal gene transfer events. The only cyanotoxin biosynthesis gene cluster identified in our screening study was the microcystin synthetase (mcy) gene cluster, suggesting that the production of non-microcystin cyanotoxins by this taxon, such as anatoxin-a or paralytic shellfish poison analogues, is either absent or rare.

Additional keywords: biogeography, cyanobacteria, cyanobactin, cyanotoxins, microviridin, non-ribosomal peptide, phylogeny, polyketide.


References

Al-Tebrineh, J., Mihali, T. K., Pomati, F., and Neilan, B. A. (2010). Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR. Applied and Environmental Microbiology 76, 7836–7842.
Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR.Crossref | GoogleScholarGoogle Scholar | 20935128PubMed |

Al-Tebrineh, J., Gehringer, M. M., Akcaalan, R., and Neilan, B. A. (2011). A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria. Toxicon 57, 546–554.
A new quantitative PCR assay for the detection of hepatotoxigenic cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 21194539PubMed |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 2231712PubMed |

Auerbach, D., Yan, F., Zhang, Y., and Müller, R. (2018). Characterization of an unusual glycerate esterification process in vioprolide biosynthesis. ACS Chemical Biology 13, 3123–3130.
Characterization of an unusual glycerate esterification process in vioprolide biosynthesis.Crossref | GoogleScholarGoogle Scholar | 30286293PubMed |

Baker, L., Sendall, B. C., Gasser, R. B., Menjivar, T., Neilan, B. A., and Jex, A. R. (2013). Rapid, multiplex-tandem PCR assay for automated detection and differentiation of toxigenic cyanobacterial blooms. Molecular and Cellular Probes 27, 208–214.
Rapid, multiplex-tandem PCR assay for automated detection and differentiation of toxigenic cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar | 23850895PubMed |

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K. D., and Sayers, E. W. (2018). GenBank. Nucleic Acids Research 46, D41–D47.
GenBank.Crossref | GoogleScholarGoogle Scholar | 29140468PubMed |

Blin, K., Wolf, T., Chevrette, M. G., Lu, X., Schwalen, C. J., Kautsar, S. A., Suarez Duran, H. G., de los Santos, E. L. C., Kim, H. U., Nave, M., Dickschat, J. S., Mitchell, D. A., Shelest, E., Breitling, R., Takano, E., Lee, S. Y., Weber, T., and Medema, M. H. (2017). antiSMASH 4.0 – improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research 45, W36–W41.
antiSMASH 4.0 – improvements in chemistry prediction and gene cluster boundary identification.Crossref | GoogleScholarGoogle Scholar | 28460038PubMed |

Botes, D. P., Wessels, P. L., Kruger, H., Runnegar, M. T. C., Santikarn, S., Smith, R. J., Barna, J. C. J., and Williams, D. H. (1985). Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins from Microcystis aeruginosa. Journal of the Chemical Society, Perkin Transactions 1, 2747–2748.
Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide toxins from Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar |

Cadel-Six, S., Dauga, C., Castets, A. M., Rippka, R., Bouchier, C., Tandeau de Marsac, N., and Welker, M. (2008). Halogenase genes in nonribosomal peptide synthetase gene clusters of Microcystis (cyanobacteria): sporadic distribution and evolution. Molecular Biology and Evolution 25, 2031–2041.
Halogenase genes in nonribosomal peptide synthetase gene clusters of Microcystis (cyanobacteria): sporadic distribution and evolution.Crossref | GoogleScholarGoogle Scholar | 18614525PubMed |

Christiansen, G., Fastner, J., Erhard, M., Börner, T., and Dittmann, E. (2003). Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. Journal of Bacteriology 185, 564–572.
Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation.Crossref | GoogleScholarGoogle Scholar | 12511503PubMed |

Christiansen, G., Philmus, B., Hemscheidt, T., and Kurmayer, R. (2011). Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. Journal of Bacteriology 193, 3822–3831.
Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity.Crossref | GoogleScholarGoogle Scholar | 21622740PubMed |

Dawson, R. M. (1998). The toxicology of microcystins. Toxicon 36, 953–962.
The toxicology of microcystins.Crossref | GoogleScholarGoogle Scholar | 9690788PubMed |

Dittmann, E., Neilan, B. A., Erhard, M., von Döhren, H., and Börner, T. (1997). Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Molecular Microbiology 26, 779–787.
Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806.Crossref | GoogleScholarGoogle Scholar | 9427407PubMed |

Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS Computational Biology 7, e1002195.
Accelerated profile HMM searches.Crossref | GoogleScholarGoogle Scholar | 22039361PubMed |

Ersmark, K., Del Valle, J. R., and Hanessian, S. (2008). Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angewandte Chemie International Edition 47, 1202–1223.
Chemistry and biology of the aeruginosin family of serine protease inhibitors.Crossref | GoogleScholarGoogle Scholar | 18076006PubMed |

Ferrão-Filho, A. da S., and Kozlowsky-Suzuki, B. (2011). Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine Drugs 9, 2729–2772.
Cyanotoxins: bioaccumulation and effects on aquatic animals.Crossref | GoogleScholarGoogle Scholar |

Fiore, M. F., Alvarenga, D. O., Varani, A. M., Hoff-Risseti, C., Crespim, E., Ramos, R. T., Silva, A., Schaker, P. D., Heck, K., Rigonato, J., and Schneider, M. P. (2013). Draft genome sequence of the Brazilian toxic bloom-forming cyanobacterium Microcystis aeruginosa strain SPC777. Genome Announcements 1, e00547-13.
Draft genome sequence of the Brazilian toxic bloom-forming cyanobacterium Microcystis aeruginosa strain SPC777.Crossref | GoogleScholarGoogle Scholar | 23908289PubMed |

Frangeul, L., Quillardet, P., Castets, A. M., Humbert, J. F., Matthijs, H. C., Cortez, D., Tolonen, A., Zhang, C. C., Gribaldo, S., Kehr, J. C., Zilliges, Y., Ziemert, N., Becker, S., Talla, E., Latifi, A., Billault, A., Lepelletier, A., Dittmann, E., Bouchier, C., and de Marsac, N. T. (2008). Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9, 274.
Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium.Crossref | GoogleScholarGoogle Scholar | 18534010PubMed |

Fritz, S. A., and Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology: the Journal of the Society for Conservation Biology 24, 1042–1051.
Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits.Crossref | GoogleScholarGoogle Scholar |

Fujiki, H., and Suganuma, M. (2011). Tumor promoters-microcystin-LR, nodularin and TNF-α and human cancer development. Anti-cancer Agents in Medicinal Chemistry 11, 4–18.
Tumor promoters-microcystin-LR, nodularin and TNF-α and human cancer development.Crossref | GoogleScholarGoogle Scholar | 21269254PubMed |

Gatte-Picchi, D., Weiz, A., Ishida, K., Hertweck, C., and Dittmann, E. (2014). Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family. Applied and Environmental Microbiology 80, 1380–1387.
Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family.Crossref | GoogleScholarGoogle Scholar | 24334668PubMed |

Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M. (2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology 57, 81–91.
DNA–DNA hybridization values and their relationship to whole-genome sequence similarities.Crossref | GoogleScholarGoogle Scholar | 17220447PubMed |

Haft, D. H., DiCuccio, M., Badretdin, A., Brover, V., Chetvernin, V., O’Neill, K., Li, W., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Zheng, C., Thibaud-Nissen, F., Geer, L. Y., Marchler-Bauer, A., and Pruitt, K. D. (2018). RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Research 46, D851–D860.
RefSeq: an update on prokaryotic genome annotation and curation.Crossref | GoogleScholarGoogle Scholar | 29112715PubMed |

Huang, I.-S., and Zimba, P. V. (2019). Cyanobacterial bioactive metabolites – a review of their chemistry and biology. Harmful Algae 83, 42–94.
Cyanobacterial bioactive metabolites – a review of their chemistry and biology.Crossref | GoogleScholarGoogle Scholar | 31097255PubMed |

Humbert, J. F., Barbe, V., Latifi, A., Gugger, M., Calteau, A., Coursin, T., Lajus, A., Castelli, V., Oztas, S., Samson, G., Longin, C., Medigue, C., and de Marsac, N. T. (2013). A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS One 8, e70747.
A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar | 23950996PubMed |

Hyatt, D., Chen, G.-L., Locascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.
Prodigal: prokaryotic gene recognition and translation initiation site identification.Crossref | GoogleScholarGoogle Scholar | 20211023PubMed |

Ishida, K., Welker, M., Christiansen, G., Cadel-Six, S., Bouchier, C., Dittmann, E., Hertweck, C., and Tandeau de Marsac, N. (2009). Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Applied and Environmental Microbiology 75, 2017–2026.
Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 19201978PubMed |

Ishitsuka, M. O., Kusumi, T., Kakisawa, H., Kaya, K., and Watanabe, M. M. (1990). Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis. Journal of the American Chemical Society 112, 8180–8182.
Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microcystis viridis.Crossref | GoogleScholarGoogle Scholar |

Janssen, E. M. L. (2019). Cyanobacterial peptides beyond microcystins – a review on co-occurrence, toxicity, and challenges for risk assessment. Water Research 151, 488–499.
Cyanobacterial peptides beyond microcystins – a review on co-occurrence, toxicity, and challenges for risk assessment.Crossref | GoogleScholarGoogle Scholar |

Jeong, H., Chun, S. J., Srivastava, A., Cui, Y., Ko, S. R., Oh, H. M., and Ahn, C. Y. (2018). Genome sequences of two cyanobacterial strains, toxic green Microcystis aeruginosa KW (KCTC 18162P) and nontoxic brown Microcystis sp. strain MC19, under xenic culture conditions. Genome Announcements 6, e00378-18.
Genome sequences of two cyanobacterial strains, toxic green Microcystis aeruginosa KW (KCTC 18162P) and nontoxic brown Microcystis sp. strain MC19, under xenic culture conditions.Crossref | GoogleScholarGoogle Scholar | 29930044PubMed |

Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8, 275–282.
The rapid generation of mutation data matrices from protein sequences.Crossref | GoogleScholarGoogle Scholar | 1633570PubMed |

Jungblut, A. D., and Neilan, B. A. (2006). Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Archives of Microbiology 185, 107–114.
Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 16402223PubMed |

Kaebernick, M., Neilan, B. A., Börner, T., and Dittmann, E. (2000). Light and the transcriptional response of the microcystin biosynthesis gene cluster. Applied and Environmental Microbiology 66, 3387–3392.
Light and the transcriptional response of the microcystin biosynthesis gene cluster.Crossref | GoogleScholarGoogle Scholar | 10919796PubMed |

Kaneko, T., Nakajima, N., Okamoto, S., Suzuki, I., Tanabe, Y., Tamaoki, M., Nakamura, Y., Kasai, F., Watanabe, A., Kawashima, K., Kishida, Y., Ono, A., Shimizu, Y., Takahashi, C., Minami, C., Fujishiro, T., Kohara, M., Katoh, M., Nakazaki, N., Nakayama, S., Yamada, M., Tabata, S., and Watanabe, M. M. (2007). Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Research 14, 247–256.
Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843.Crossref | GoogleScholarGoogle Scholar | 18192279PubMed |

Kardinaal, W. E. A., Tonk, L., Janse, I., Hol, S., Slot, P., Huisman, J., and Visser, P. M. (2007). Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Applied and Environmental Microbiology 73, 2939–2946.
Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: Improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift (Berlin) 15, 259–263.
World map of the Köppen–Geiger climate classification updated.Crossref | GoogleScholarGoogle Scholar |

Lee, I., Kim, Y. O., Park, S. C., and Chun, J. (2016). OrthoANI: an improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology 66, 1100–1103.
OrthoANI: an improved algorithm and software for calculating average nucleotide identity.Crossref | GoogleScholarGoogle Scholar | 26585518PubMed |

Leikoski, N., Fewer, D. P., and Sivonen, K. (2009). Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria. Applied and Environmental Microbiology 75, 853–857.
Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 19047393PubMed |

Leikoski, N., Fewer, D. P., Jokela, J., Alakoski, P., Wahlsten, M., and Sivonen, K. (2012). Analysis of an inactive cyanobactin biosynthetic gene cluster leads to discovery of new natural products from strains of the genus Microcystis. PLoS One 7, e43002.
Analysis of an inactive cyanobactin biosynthetic gene cluster leads to discovery of new natural products from strains of the genus Microcystis.Crossref | GoogleScholarGoogle Scholar | 22952627PubMed |

Leikoski, N., Liu, L., Jokela, J., Wahlsten, M., Gugger, M., Calteau, A., Permi, P., Kerfeld, C. A., Sivonen, K., and Fewer, D. P. (2013). Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chemistry & Biology 20, 1033–1043.
Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.Crossref | GoogleScholarGoogle Scholar |

Lima, S. T., Alvarenga, D. O., Etchegaray, A., Fewer, D. P., Jokela, J., Varani, A. M., Sanz, M., Dörr, F. A., Pinto, E., Sivonen, K., and Fiore, M. F. (2017). Genetic organization of anabaenopeptin and spumigin biosynthetic gene clusters in the cyanobacterium Sphaerospermopsis torques-reginae itep-024. ACS Chemical Biology 12, 769–778.
Genetic organization of anabaenopeptin and spumigin biosynthetic gene clusters in the cyanobacterium Sphaerospermopsis torques-reginae itep-024.Crossref | GoogleScholarGoogle Scholar | 28085246PubMed |

MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., and Codd, G. A. (1990). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters 264, 187–192.
Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants.Crossref | GoogleScholarGoogle Scholar | 2162782PubMed |

Martin, C., Oberer, L., Ino, T., König, W. A., Busch, M., and Weckesser, J. (1993). Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. The Journal of Antibiotics 46, 1550–1556.
Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806.Crossref | GoogleScholarGoogle Scholar | 8244882PubMed |

Medema, M. H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J. B., Blin, K., de Bruijn, I., Chooi, Y. H., Claesen, J., Coates, R. C., Cruz-Morales, P., Duddela, S., Düsterhus, S., Edwards, D. J., Fewer, D. P., Garg, N., Geiger, C., Gomez-Escribano, J. P., Greule, A., Hadjithomas, M., Haines, A. S., Helfrich, E. J. N., Hillwig, M. L., Ishida, K., Jones, A. C., Jones, C. S., Jungmann, K., Kegler, C., Kim, H. U., Kötter, P., Krug, D., Masschelein, J., Melnik, A. V., Mantovani, S. M., Monroe, E. A., Moore, M., Moss, N., Nützmann, H.-W., Pan, G., Pati, A., Petras, D., Reen, F. J., Rosconi, F., Rui, Z., Tian, Z., Tobias, N. J., Tsunematsu, Y., Wiemann, P., Wyckoff, E., Yan, X., Yim, G., Yu, F., Xie, Y., Aigle, B., Apel, A. K., Balibar, C. J., Balskus, E. P., Barona-Gómez, F., Bechthold, A., Bode, H. B., Borriss, R., Brady, S. F., Brakhage, A. A., Caffrey, P., Cheng, Y.-Q., Clardy, J., Cox, R. J., De Mot, R., Donadio, S., Donia, M. S., van der Donk, W. A., Dorrestein, P. C., Doyle, S., Driessen, A. J. M., Ehling-Schulz, M., Entian, K.-D., Fischbach, M. A., Gerwick, L., Gerwick, W. H., Gross, H., Gust, B., Hertweck, C., Höfte, M., Jensen, S. E., Ju, J., Katz, L., Kaysser, L., Klassen, J. L., Keller, N. P., Kormanec, J., Kuipers, O. P., Kuzuyama, T., Kyrpides, N. C., Kwon, H.-J., Lautru, S., Lavigne, R., Lee, C. Y., Linquan, B., Liu, X., Liu, W., Luzhetskyy, A., Mahmud, T., Mast, Y., Méndez, C., Metsä-Ketelä, M., Micklefield, J., Mitchell, D. A., Moore, B. S., Moreira, L. M., Müller, R., Neilan, B. A., Nett, M., Nielsen, J., O’Gara, F., Oikawa, H., Osbourn, A., Osburne, M. S., Ostash, B., Payne, S. M., Pernodet, J.-L., Petricek, M., Piel, J., Ploux, O., Raaijmakers, J. M., Salas, J. A., Schmitt, E. K., Scott, B., Seipke, R. F., Shen, B., Sherman, D. H., Sivonen, K., Smanski, M. J., Sosio, M., Stegmann, E., Süssmuth, R. D., Tahlan, K., Thomas, C. M., Tang, Y., Truman, A. W., Viaud, M., Walton, J. D., Walsh, C. T., Weber, T., van Wezel, G. P., Wilkinson, B., Willey, J. M., Wohlleben, W., Wright, G. D., Ziemert, N., Zhang, C., Zotchev, S. B., Breitling, R., Takano, E., and Glöckner, F. O. (2015). Minimum information about a biosynthetic gene cluster. Nature Chemical Biology 11, 625–631.
Minimum information about a biosynthetic gene cluster.Crossref | GoogleScholarGoogle Scholar | 26284661PubMed |

Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., Davies, W., Gabrielsen, T. M., Rudi, K., and Jakobsen, K. S. (2003). Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. Journal of Bacteriology 185, 2774–2785.
Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains.Crossref | GoogleScholarGoogle Scholar | 12700256PubMed |

Murakami, M., Sun, Q., Ishida, K., Matsuda, H., Okino, T., and Yamaguchi, K. (1997). Microviridins, elastase inhibitors from the cyanobacterium Nostoc minutum (NIES-26). Phytochemistry 45, 1197–1202.
Microviridins, elastase inhibitors from the cyanobacterium Nostoc minutum (NIES-26).Crossref | GoogleScholarGoogle Scholar |

Na, S.-I., Kim, Y. O., Yoon, S.-H., Ha, S., Baek, I., and Chun, J. (2018). UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. Journal of Microbiology 56, 280–285.
UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction.Crossref | GoogleScholarGoogle Scholar |

Nishizawa, T., Ueda, A., Nakano, T., Nishizawa, A., Miura, T., Asayama, M., Fujii, K., Harada, K., and Shirai, M. (2011). Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium Microcystis. Journal of Biochemistry 149, 475–485.
Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium Microcystis.Crossref | GoogleScholarGoogle Scholar | 21212071PubMed |

Okano, K., Miyata, N., and Ozaki, Y. (2015). Whole genome sequence of the non-microcystin-producing Microcystis aeruginosa strain NIES-44. Genome Announcements 3, e00135-15.
Whole genome sequence of the non-microcystin-producing Microcystis aeruginosa strain NIES-44.Crossref | GoogleScholarGoogle Scholar | 26227601PubMed |

Okino, T., Matsuda, H., Murakami, M., and Yamaguchi, K. (1993). Microginin, an angiotensin-converting enzyme inhibitor from the blue–green alga Microcystis aeruginosa. Tetrahedron Letters 34, 501–504.
Microginin, an angiotensin-converting enzyme inhibitor from the blue–green alga Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar |

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
APE: analyses of phylogenetics and evolution in R language.Crossref | GoogleScholarGoogle Scholar | 14734327PubMed |

Parajuli, A., Kwak, D. H., Dalponte, L., Leikoski, N., Galica, T., Umeobika, U., Trembleau, L., Bent, A., Sivonen, K., Wahlsten, M., Wang, H., Rizzi, E., De Bellis, G., Naismith, J., Jaspars, M., Liu, X., Houssen, W., and Fewer, D. P. (2016). A unique tryptophan C-prenyltransferase from the Kawaguchipeptin biosynthetic pathway. Angewandte Chemie 55, 3596–3599.
A unique tryptophan C-prenyltransferase from the Kawaguchipeptin biosynthetic pathway.Crossref | GoogleScholarGoogle Scholar | 26846478PubMed |

Park, H. D., Watanabe, M. F., Harada, K. I., Nagai, H., Suzuki, M., Watanabe, M., and Hayashi, H. (1993). Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Natural Toxins 1, 353–360.
Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters.Crossref | GoogleScholarGoogle Scholar | 8167957PubMed |

Pearson, L. A., Hisbergues, M., Börner, T., Dittmann, E., and Neilan, B. A. (2004). Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Applied and Environmental Microbiology 70, 6370–6378.
Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806.Crossref | GoogleScholarGoogle Scholar | 15528494PubMed |

Philmus, B., Christiansen, G., Yoshida, W. Y., and Hemscheidt, T. K. (2008). Post-translational modification in microviridin biosynthesis. ChemBioChem 9, 3066–3073.
Post-translational modification in microviridin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 19035375PubMed |

Portmann, C., Blom, J. F., Kaiser, M., Brun, R., Jüttner, F., and Gademann, K. (2008). Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. Journal of Natural Products 71, 1891–1896.
Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation.Crossref | GoogleScholarGoogle Scholar | 18973386PubMed |

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.
FastTree 2 – approximately maximum-likelihood trees for large alignments.Crossref | GoogleScholarGoogle Scholar | 20224823PubMed |

Rantala, A., Fewer, D. P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Borner, T., and Sivonen, K. (2004). Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America 101, 568–573.
Phylogenetic evidence for the early evolution of microcystin synthesis.Crossref | GoogleScholarGoogle Scholar | 14701903PubMed |

Rhee, J. S., Choi, B. S., Han, J., Hwang, S. J., Choi, I. Y., and Lee, J. S. (2012). Draft genome database construction from four strains (NIES-298, FCY-26, -27, and -28) of the cyanobacterium Microcystis aeruginosa. Journal of Microbiology and Biotechnology 22, 1208–1213.
Draft genome database construction from four strains (NIES-298, FCY-26, -27, and -28) of the cyanobacterium Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar | 22814493PubMed |

Rohrlack, T., Christoffersen, K., Kaebernick, M., and Neilan, B. A. (2004). Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Applied and Environmental Microbiology 70, 5047–5050.
Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria.Crossref | GoogleScholarGoogle Scholar | 15294849PubMed |

Rouhiainen, L., Vakkilainen, T., Siemer, B. L., Buikema, W., Haselkorn, R., and Sivonen, K. (2004). Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Applied and Environmental Microbiology 70, 686–692.
Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90.Crossref | GoogleScholarGoogle Scholar | 14766543PubMed |

Rouhiainen, L., Jokela, J., Fewer, D. P., Urmann, M., and Sivonen, K. (2010). Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (cyanobacteria). Chemistry & Biology 17, 265–273.
Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (cyanobacteria).Crossref | GoogleScholarGoogle Scholar |

Rounge, T. B., Rohrlack, T., Tooming-Klunderud, A., Kristensen, T., and Jakobsen, K. S. (2007). Comparison of cyanopeptolin genes in Planktothrix, Microcystis, and Anabaena Strains: evidence for independent evolution within each genus. Applied and Environmental Microbiology 73, 7322–7330.
Comparison of cyanopeptolin genes in Planktothrix, Microcystis, and Anabaena Strains: evidence for independent evolution within each genus.Crossref | GoogleScholarGoogle Scholar | 17921284PubMed |

Rounge, T., Rohrlack, T., Nederbragt, A., Kristensen, T., and Jakobsen, K. (2009). A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain. BMC Genomics 10, 396.
A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain.Crossref | GoogleScholarGoogle Scholar | 19706155PubMed |

Sandrini, G., Matthijs, H. C. P., Verspagen, J. M. H., Muyzer, G., and Huisman, J. (2014). Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. The ISME Journal 8, 589–600.
Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis.Crossref | GoogleScholarGoogle Scholar | 24132080PubMed |

Sant’Anna, C. L., de Carvalho, L. R., Fiore, M. F., Silva-Stenico, M. E., Lorenzi, A. S., Rios, F. R., Konno, K., Garcia, C., and Lagos, N. (2011). Highly toxic Microcystis aeruginosa strain, isolated from São Paulo, Brazil, produce hepatotoxins and paralytic shellfish poison neurotoxins. Neurotoxicity Research 19, 389–402.
Highly toxic Microcystis aeruginosa strain, isolated from São Paulo, Brazil, produce hepatotoxins and paralytic shellfish poison neurotoxins.Crossref | GoogleScholarGoogle Scholar | 20376712PubMed |

Scherer, M., Bezold, D., and Gademann, K. (2016). Investigating the toxicity of the aeruginosin chlorosulfopeptides by chemical synthesis. Angewandte Chemie International Edition 55, 9427–9431.
Investigating the toxicity of the aeruginosin chlorosulfopeptides by chemical synthesis.Crossref | GoogleScholarGoogle Scholar | 27332048PubMed |

Schreuder, H., Liesum, A., Lönze, P., Stump, H., Hoffmann, H., Schiell, M., Kurz, M., Toti, L., Bauer, A., Kallus, C., Klemke-Jahn, C., Czech, J., Kramer, D., Enke, H., Niedermeyer, T. H. J., Morrison, V., Kumar, V., and Brönstrup, M. (2016). Isolation, co-crystallization and structure-based characterization of anabaenopeptins as highly potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa). Scientific Reports 6, 32958.
Isolation, co-crystallization and structure-based characterization of anabaenopeptins as highly potent inhibitors of activated thrombin activatable fibrinolysis inhibitor (TAFIa).Crossref | GoogleScholarGoogle Scholar | 27604544PubMed |

Sivonen, K., and Jones, G. (1999). Cyanobacterial toxins. In ‘Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management’. (Eds I. Chorus and J. Bartram.) pp. 41–111. (E and FN Spon: London, UK.)

Sivonen, K., Leikoski, N., Fewer, D. P., and Jokela, J. (2010). Cyanobactins – ribosomal cyclic peptides produced by cyanobacteria. Applied Microbiology and Biotechnology 86, 1213–1225.
Cyanobactins – ribosomal cyclic peptides produced by cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 20195859PubMed |

Stamatakis, A. (2006). Phylogenetic models of rate heterogeneity: a high performance computing perspective (2006). In ‘Proceedings 20th IEEE International Parallel and Distributed Processing Symposium’, 25–29 April 2006, Rhodes Island, Greece. INSPEC Accession Number 8969655. (IEEE.) 10.1109/IPDPS.2006.1639535

Strangman, W. K., and Wright, J. L. C. (2016). Microginins 680, 646, and 612 – new chlorinated Ahoa-containing peptides from a strain of cultured Microcystis aeruginosa. Tetrahedron Letters 57, 1801.
Microginins 680, 646, and 612 – new chlorinated Ahoa-containing peptides from a strain of cultured Microcystis aeruginosa.Crossref | GoogleScholarGoogle Scholar |

Tanabe, Y., Kaya, K., and Watanabe, M. M. (2004). Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. Journal of Molecular Evolution 58, 633–641.
Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp.Crossref | GoogleScholarGoogle Scholar | 15461420PubMed |

Tillett, D., Dittmann, E., Erhard, M., von Döhren, H., Börner, T., and Neilan, B. A. (2000). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chemistry & Biology 7, 753–764.
Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system.Crossref | GoogleScholarGoogle Scholar |

Tillett, D., Parker, D. L., and Neilan, B. A. (2001). Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Applied and Environmental Microbiology 67, 2810–2818.
Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies.Crossref | GoogleScholarGoogle Scholar | 11375198PubMed |

Tooming-Klunderud, A., Rohrlack, T., Shalchian-Tabrizi, K., Kristensen, T., and Jakobsen, K. S. (2007). Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from Microcystis: implications for evolution of cyanopeptolins. Microbiology 153, 1382–1393.
Structural analysis of a non-ribosomal halogenated cyclic peptide and its putative operon from Microcystis: implications for evolution of cyanopeptolins.Crossref | GoogleScholarGoogle Scholar | 17464052PubMed |

Tria, F. D. K., Landan, G., and Dagan, T. (2017). Phylogenetic rooting using minimal ancestor deviation. Nature Ecology & Evolution 1, 0193.
Phylogenetic rooting using minimal ancestor deviation.Crossref | GoogleScholarGoogle Scholar |

Vernikos, G. S., and Parkhill, J. (2006). Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22, 2196–2203.
Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands.Crossref | GoogleScholarGoogle Scholar | 16837528PubMed |

Weiz, A. R., Ishida, K., Makower, K., Ziemert, N., Hertweck, C., and Dittmann, E. (2011). Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic peptide microviridin. Chemistry & Biology 18, 1413–1421.
Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic peptide microviridin.Crossref | GoogleScholarGoogle Scholar |

Wiese, M., D’Agostino, P. M., Mihali, T. K., Moffitt, M. C., and Neilan, B. A. (2010). Neurotoxic alkaloids: saxitoxin and its analogs. Marine Drugs 8, 2185–2211.
Neurotoxic alkaloids: saxitoxin and its analogs.Crossref | GoogleScholarGoogle Scholar | 20714432PubMed |

Yamaguchi, H., Suzuki, S., Tanabe, Y., Osana, Y., Shimura, Y., Ishida, K., and Kawachi, M. (2015). Complete genome sequence of Microcystis aeruginosa NIES-2549, a bloom-forming cyanobacterium from Lake Kasumigaura, Japan. Genome Announcements 3, e00551-15.
Complete genome sequence of Microcystis aeruginosa NIES-2549, a bloom-forming cyanobacterium from Lake Kasumigaura, Japan.Crossref | GoogleScholarGoogle Scholar | 26494683PubMed |

Yamaguchi, H., Suzuki, S., Osana, Y., and Kawachi, M. (2018). Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of Group G M. aeruginosa. Journal of Genomics 6, 30–33.
Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of Group G M. aeruginosa.Crossref | GoogleScholarGoogle Scholar | 29576807PubMed |

Yang, C., Zhang, W., Ren, M., Song, L., Li, T., and Zhao, J. (2013). Whole-genome sequence of Microcystis aeruginosa TAIHU98, a nontoxic bloom-forming strain isolated from Taihu Lake, China. Genome Announcements 1, e00333-13.
Whole-genome sequence of Microcystis aeruginosa TAIHU98, a nontoxic bloom-forming strain isolated from Taihu Lake, China.Crossref | GoogleScholarGoogle Scholar | 24092783PubMed |

Yang, C., Lin, F., Li, Q., Li, T., and Zhao, J. (2015). Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Frontiers in Microbiology 6, 394.
Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium.Crossref | GoogleScholarGoogle Scholar | 26029174PubMed |

Yoon, S. H., Ha, S. M., Lim, J., Kwon, S., and Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek – International Journal of General and Molecular Microbiology 110, 1281–1286.
A large-scale evaluation of algorithms to calculate average nucleotide identity.Crossref | GoogleScholarGoogle Scholar |

Zhang, Q., Yang, X., Wang, H., and van der Donk, W. A. (2014). High divergence of the precursor peptides in combinatorial lanthipeptide biosynthesis. ACS Chemical Biology 9, 2686–2694.
High divergence of the precursor peptides in combinatorial lanthipeptide biosynthesis.Crossref | GoogleScholarGoogle Scholar | 25244001PubMed |

Ziemert, N., Ishida, K., Liaimer, A., Hertweck, C., and Dittmann, E. (2008a). Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria. Angewandte Chemie 47, 7756–7759.
Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 18683268PubMed |

Ziemert, N., Ishida, K., Quillardet, P., Bouchier, C., Hertweck, C., de Marsac, N. T., and Dittmann, E. (2008b). Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa. Applied and Environmental Microbiology 74, 1791–1797.
Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa.Crossref | GoogleScholarGoogle Scholar | 18245249PubMed |

Ziemert, N., Ishida, K., Weiz, A., Hertweck, C., and Dittmann, E. (2010). Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides. Applied and Environmental Microbiology 76, 3568–3574.
Exploiting the natural diversity of microviridin gene clusters for discovery of novel tricyclic depsipeptides.Crossref | GoogleScholarGoogle Scholar | 20363789PubMed |

Zilliges, Y., Kehr, J. C., Meissner, S., Ishida, K., Mikkat, S., Hagemann, M., Kaplan, A., Börner, T., and Dittmann, E. (2011). The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One 6, e17615.
The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions.Crossref | GoogleScholarGoogle Scholar | 21445264PubMed |