Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Phytoplankton-based water quality metrics: feasibility of their use in a Neotropical shallow lake

Diego Frau A B , Gisela Mayora A and Melina Devercelli A
+ Author Affiliations
- Author Affiliations

A Laboratorio de Plancton, Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria Paraje El Pozo, C. P. 3000, Santa Fe, Argentina.

B Corresponding author. Email address: diegofrau@gmail.com

Marine and Freshwater Research 69(11) 1746-1754 https://doi.org/10.1071/MF18101
Submitted: 26 August 2017  Accepted: 1 May 2018   Published: 30 July 2018

Abstract

Urban lakes constitute important recreational areas, but often they are eutrophicated. In this study we discuss the utility of 12 ecological quality metrics to test whether they: (1) can be applied to Neotropical lakes; (2) are sensitive to environmental variations throughout the year; and (3) are affected by heterogeneous spatial distribution of phytoplankton. Phytoplankton and environmental variables (including nutrients) were sampled monthly in an urban lake (four littoral and one limnetic station) throughout 1 year (n = 60 samples). Twelve ecological quality metrics were tested using total phosphorus as a proxy of eutrophication through general lineal models. The best adjusted metrics were then transformed to an ecological quality ratio (EQR) to allow comparisons. The Phytoplankton Assemblage Index (Q-index) and the Cyanobacteria Bloom Index (CBI) were the most accurate. Differences in water quality estimation occurred across the year, with an overestimation of water quality in the absence of cyanobacteria blooms. There were no differences due to effects of the spatial distribution of phytoplankton. The Q-index was related to temperature and soluble reactive phosphorus, whereas the CBI was related to conductivity. We conclude that the Q-index is the most accurate metric for monitoring purposes, responding well to variations in phosphorus.

Additional keywords: eutrophication, hypertrophic, phosphorus.


References

American Public Health Association (2005). ‘Standard Methods for the Examination of Water and Wastewater’, 21st edn. (APHA: Washington, DC, USA.)

Birch, S., and McCaskie, J. (1999). Shallow urban lakes: a challenge for lake management. Hydrobiologia 395–396, 365–378.
Shallow urban lakes: a challenge for lake management.Crossref | GoogleScholarGoogle Scholar |

Bonilla, S. (2009). Cianobacterias planctónicas del Uruguay, manual para la identificación y medidas de gestión. Documento técnico PHI-LAC number 16, UNESCO, Montevideo, Uruguay.

Borics, G., Görgényi, J., Grigorszky, I., László-Nagyc, Z., Tóthmérészd, B., Krasznaie, E., and Várbíróa, G. (2014). The role of phytoplankton diversity metrics in shallow lake and river quality assessment. Ecological Indicators 45, 28–36.
The role of phytoplankton diversity metrics in shallow lake and river quality assessment.Crossref | GoogleScholarGoogle Scholar |

Brown, C. D., Hoyer, M. V., Bachmann, R. W., and Canfield, D. E. (2000). Nutrient–chlorophyll relationships: an evaluation of empirical nutrient–chlorophyll models using Florida and north-temperate lake data. Canadian Journal of Fisheries and Aquatic Sciences 57, 1574–1583.
Nutrient–chlorophyll relationships: an evaluation of empirical nutrient–chlorophyll models using Florida and north-temperate lake data.Crossref | GoogleScholarGoogle Scholar |

Chorus, I., Falconer, I. R., Salas, H. J., and Bartram, J. (2000). Health risks caused by freshwater cyanobacteria in recreational waters. Journal of Toxicology and Environmental Health – B. Critical Reviews 3, 323–347.
Health risks caused by freshwater cyanobacteria in recreational waters.Crossref | GoogleScholarGoogle Scholar |

Clarke, R. T., Furse, M. T., Gunn, R. J. M., Winder, J. M., and Wright, J. F. (2002). Sampling variation in macroinvertebrate data and implications for river quality indices. Freshwater Biology 47, 1735–1751.
Sampling variation in macroinvertebrate data and implications for river quality indices.Crossref | GoogleScholarGoogle Scholar |

Elliott, J. A., Jones, I. D., and Thackeray, S. J. (2006). Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559, 401–411.
Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake.Crossref | GoogleScholarGoogle Scholar |

European Commission (2000). European Commission Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Community – Legislation 327, 1–73.

Food and Agriculture Organization (2003). Review of world water resources by country. FAO, Rome, Italy.

Frau, D., Devercelli, M., José de Paggi, S., Scarabotti, P., Mayora, G., Battauz, Y., and Senn, M. (2015). Can top-down and bottom-up forces explain phytoplankton structure in a subtropical and shallow groundwater connected lake? Marine and Freshwater Research 66, 1106–1115.
Can top-down and bottom-up forces explain phytoplankton structure in a subtropical and shallow groundwater connected lake?Crossref | GoogleScholarGoogle Scholar |

Frau, D., de Tezanos Pinto, P., and Mayora, G. (2018). Are cyanobacteria total, specific and trait abundance regulated by the same environmental variables? Annales de Limnologie – International Journal of Limnology 54, 3.
Are cyanobacteria total, specific and trait abundance regulated by the same environmental variables?Crossref | GoogleScholarGoogle Scholar |

Gross, E. M., Hilt, E., Lombardo, P., and Mulderij, G. (2007). Searching for allelopathic effects of submerged macrophytes on phytoplankton – state of the art and open questions. Hydrobiologia 584, 77–88.
Searching for allelopathic effects of submerged macrophytes on phytoplankton – state of the art and open questions.Crossref | GoogleScholarGoogle Scholar |

Harper, D. A. T. (1999). ‘Numerical Palaeobiology.’ (Wiley: New York, NY, USA.)

Hillebrand, H., Dürselen, C., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.
Biovolume calculation for pelagic and benthic microalgae.Crossref | GoogleScholarGoogle Scholar |

Hughes, R. M., and Oberdorff, T. (1999). Applications of IBI concepts and metrics to waters outside the United States and Canada. In ‘Assessment Approaches for Estimating Biological Integrity Using Fish Assemblages’. (Ed. P. S. Thomas.) pp. 79–83. (Lewis Press: Boca Raton, FL, USA.)

Koenings, J. P., and Edmundson, J. A. (1991). Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity. Limnology and Oceanography 36, 91–105.
Secchi disk and photometer estimates of light regimes in Alaskan lakes: effects of yellow color and turbidity.Crossref | GoogleScholarGoogle Scholar |

Komárek, J., and Anagnostidis, K. (1999). ‘Süsswasserflora von Mitteleuropa Bd. 19/1: Cyanoprokaryota: Teil / Part 1: Chroococcales.’ (Eds H. Ettl, G. Gärtner, G. Heynig, and D. Mollenhauer.) (Spektrum Akademischer Verlag.) [In German].

Komárek, J., and Anagnostidis, K. (2005). ‘Süßwasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota: Bd. 2 / Part 2: Oscillatoriales.’ (Eds B. Büdel, G. Gärtner, L. Krienitz, and M. Scnagerl.) (Spektrum Akademischer Verlag.) [In German].

Komárek, J., and Fott, B. (1983). ‘Die Binnengewässer, Band 16 Teil 7 Hälfte 1. Das Phytoplankton des Süßwassers. Systematik und Biologie Teil 7, 1. Hälfte: Chlorophyceae (Grünalgen), Ordnung Chlorococcales.’ (Ed. G. Huber-Pestalozzi.) (Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany.)

Krammer, K., and Lange-Bertalot, H. (1991). ‘Süßwasserflora von Mitteleuropa. Bacillariophyceae. Teil 3: Centrales, Fragilariaceae, Eunotiaceae.’ (Eds H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer.) (Spektrum Akademischer Verlag.) [In German].

Kruk, C., Devercelli, M., Huszar, V. L. M., Hernández, E., Beamud, G., Diaz, M., Silva, L. H. S., and Segura, A. M. (2017). Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology 62, 1681–1692.
Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques.Crossref | GoogleScholarGoogle Scholar |

Lee, R. E. (2008). ‘Phycology.’ (Cambridge University Press, New York)

Madgwick, G., Jones, I. D., Thackeray, S. J., Elliott, J. A., and Miller, H. J. (2006). Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water. Freshwater Biology 51, 1798–1810.
Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water.Crossref | GoogleScholarGoogle Scholar |

Margalef, R. (1958). Information theory in ecology. International Journal of General Systems 3, 36–71.

Martínez-Arroyo, A., and Jáuregui, E. (2000). On the environmental role of urban lakes in Mexico City. Urban Ecosystems 4, 145–166.
On the environmental role of urban lakes in Mexico City.Crossref | GoogleScholarGoogle Scholar |

Mischke, U., Carvalho, L., McDonald, C., Skjelbred, B., Solheim, A. L., Phillips, G., de Hoyos, C., Borics, G., and Moe, J. (2011). Deliverable D3.1-2: report on phytoplankton bloom metrics (background for common metrics). (WISER Project.) Available at http://www.wiser.eu/download/D3.1-2.pdf [Verified 24 July 2018].

Naselli-Flores, L. (2008). Urban lakes: ecosystems at risk, worthy of the best care. In ‘Proceedings of Taal 2007: the 12th World Lake Conference’, 28 October–2 November 2007, Jaipur, Rajasthan, India. (Eds M. Sengupta and R. Dalwani.) pp. 1333–1337. (International Lake Environment Committee.)

Padisák, J., Borics, G., Grigorszky, I., and Soróczki-Pintér, E. (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553, 1–14.
Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index.Crossref | GoogleScholarGoogle Scholar |

Paerl, H. W., Gardner, W. S., Havensm, K. E., Joyner, A. R., McCarthy, M. J., Newell, S. E., Qin, B., and Scott, J. T. (2016). Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54, 213–222.
Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.Crossref | GoogleScholarGoogle Scholar |

Phillips, G., Pietiläinen, O. P., Carvalho, L., Solimini, A., Lyche Solheim, A., and Cardoso, A. C. (2008). Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology 42, 213–226.
Chlorophyll–nutrient relationships of different lake types using a large European dataset.Crossref | GoogleScholarGoogle Scholar |

Phillips, G., Skjelbred, B., Morabito, G., Carvalho, L., Solheim, A. L., Andersen, T., Mischke, U., de Hoyos, C., and Borics, G. (2011). Deliverable D3.1-1: report on lake phytoplankton composition metrics, including a common metric approach for use in intercalibration by all GIGs (background for common metrics). (WISER Project.) Available at http://www.wiser.eu/download/D3.1-1_draft.pdf [Verified 24 July 2018].

Pielou, E. C. (1975). ‘Ecological Diversity.’ (Wiley: New York, NY, USA.)

Reynolds, C. (2006). ‘Ecology of Phytoplankton.’ (University Press: Cambridge, UK.)

Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society of London – B. Biological Sciences 279, 4322–4333.
The dilemma of controlling cultural eutrophication of lakes.Crossref | GoogleScholarGoogle Scholar |

Shannon, C. E., and Weaver, W. (1949). ‘The Mathematical Theory of Communication.’ (University of Illinois Press: Urbana, IL, USA.)

Simpson, E. H. (1949). Measurement of diversity. Nature 163, 688.
Measurement of diversity.Crossref | GoogleScholarGoogle Scholar |

Sinistro, R., Izaguirre, I., and Asikian, V. (2006). Experimental study on the microbial plankton community in a South American wetland (Lower Paraná River Basin) and the effect of the light deficiency due to the floating macrophytes. Journal of Plankton Research 28, 753–768.
Experimental study on the microbial plankton community in a South American wetland (Lower Paraná River Basin) and the effect of the light deficiency due to the floating macrophytes.Crossref | GoogleScholarGoogle Scholar |

Smith, V. H., and Schindler, D. W. (2009). Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24, 201–207.
Eutrophication science: where do we go from here?Crossref | GoogleScholarGoogle Scholar |

Søndergaard, M., Larsen, S. E., Jørgensen, T. B., and Jeppesen, E. (2011). Using chlorophyll a and cyanobacteria in the ecological classification of lakes. Ecological Indicators 11, 1403–1412.
Using chlorophyll a and cyanobacteria in the ecological classification of lakes.Crossref | GoogleScholarGoogle Scholar |

Spatharis, S., and Tsirtsis, G. (2010). Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in the Eastern Mediterranean. Ecological Indicators 10, 840–847.
Ecological quality scales based on phytoplankton for the implementation of Water Framework Directive in the Eastern Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Srebotnjak, T., Carr, G., de Sherbininc, A., and Rickwood, C. (2012). A global water quality index and hot-deck imputation of missing data. Ecological Indicators 17, 108–119.
A global water quality index and hot-deck imputation of missing data.Crossref | GoogleScholarGoogle Scholar |

Tejerina-Garro, F. L., Maldonado, M., Ibañez, C., Pont, D., Roset, N., and Oberdorff, T. (2005). Effects of natural and anthropogenic environmental changes on riverine fish assemblages: a framework for ecological assessment of rivers. Brazilian Archives of Biology and Technology 48, 91–108.
Effects of natural and anthropogenic environmental changes on riverine fish assemblages: a framework for ecological assessment of rivers.Crossref | GoogleScholarGoogle Scholar |

Tell, G., and Conforti, V. (1986). ‘Bibliotheca Phycologica. Vol. 75. Euglenophyta pigmentadas de Argentina.’ (Ed. J. Cramer.) (Gebrüder Borntraeger: Stuttgart, Germany.)

Thackeray, S. J., Nõges, P., Dunbar, M. J., Dudley, B. J., Skjelbred, B., Morabito, G., Carvalho, L., Phillips, G., Mischke, U., Catalan, J., de Hoyos, C., Laplace, C., Austoni, M., Padedda, B. M., Maileht, K., Pasztaleniec, A., Järvinen, M., Solheim, A. L., and Clarke, R. T. (2013). Quantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of lake phytoplankton community metrics. Ecological Indicators 29, 34–47.
Quantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of lake phytoplankton community metrics.Crossref | GoogleScholarGoogle Scholar |

UNESCO (2006). Evaluación de los Recursos Hídricos. Elaboración del balance hídrico integral por cuencas hidrográficas. Programa Hidrológico Internacional (PHI) de la Oficina Regional de Ciencia para, Documentos Técnicos del PHI-LAC, number 4. América Latina y el Caribe de la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO), Montevideo, Uruguay.

United Nations Environment Program (2002). ‘Global Environmental Outlook 3: Past, Present and Future Perspectives.’ (Earthscan Publications: London, UK.)

Utermöhl, H. (1958). Zur Vervollkommnung der quantitative Phytoplankton: Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte 9, 1–38.

Venrick, E. L. (1978). How many cells to count? In ‘Phytoplankton Manual’. (Ed. A. Von Sournia.) pp. 167–180. (UNESCO: Paris, France.)

Verma, S. R., Chaudhari, P. R., Singh, R. K., and Wate, S. R. (2011). Studies on the ecology and trophic status of an urban lake at Nagpur City, India. Rayasan Journal of Chemistry 4, 652–659.

Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon 21, 213–251.
Evolution and measurement of species diversity.Crossref | GoogleScholarGoogle Scholar |

Wu, T., Qin, B., Brookes, J. D., Shi, K., Zhu, G., Zhu, M., Yan, W., and Wang, Z. (2015). The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. The Science of the Total Environment 518–519, 24–30.
The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China.Crossref | GoogleScholarGoogle Scholar |

Zalocar de Domitrovic, Y., and Maidana, N. I. (1997). ‘Bibliotheca Diatomologica Bd. 34. Taxonomic and ecological studies of the Paraná River diatom flora (Argentina).’ (Eds H. Lange-Bertalot and P. Kociolek.) (Gebrüder Borntraeger: Stuttgart, Germany.)