Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

New populations of the rare subterranean blind cave eel Ophisternon candidum (Synbranchidae) reveal recent historical connections throughout north-western Australia

Glenn I. Moore A F , William F. Humphreys B C D and Ralph Foster E
+ Author Affiliations
- Author Affiliations

A Fish Section, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia.

B Subterranean Biology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia.

C School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

D School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

E Ichthyology Section, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

F Corresponding author. Email: glenn.moore@museum.wa.gov.au

Marine and Freshwater Research 69(10) 1517-1524 https://doi.org/10.1071/MF18006
Submitted: 09 January 2018  Accepted: 16 March 2018   Published: 4 July 2018

Abstract

The enigmatic blind cave eel Ophisternon candidum is one of Australia’s least known fishes and is one of only three vertebrates in Australia with an entirely subterranean existence. For more than half a century, O. candidum was thought to be restricted to some 100 km of coastal cave systems in north-western Australia. Herein we report on two new populations, each separated by hundreds of kilometres, and provide the first complete list of all known records of subterranean Ophisternon in Western Australia. Using morphological and molecular data, we show that these populations are conspecific, with one population showing evidence of genetic differentiation. Geological and biogeographic explanations are explored, along with conservation considerations. All populations face actual and potential threats, especially from mining activities, and there is a need for management and conservation strategies specific to each population.

Additional keywords: anchialine, Barrow Island, biogeography, Cape Range, conservation, genetics, Pilbara.


References

Adams, M., and Humphreys, W. F. (1993). Patterns of genetic diversity within selected subterranean fauna of the Cape Range peninsula, Western Australia: systematic and biogeographic implications. In ‘The Biogeography of Cape Range, Western Australia. Records of the Western Australian Museum Supplement 45’. (Ed. W. F. Humphreys.) pp. 145–164. (Western Australian Museum: Perth, WA, Australia.)

Allen, G. R. (1992). ‘Inland Fishes of Western Australia.’ (Western Australian Museum: Perth, WA, Australia.)

Allen, G. R., Midgley, S. H., and Allen, M. (2002). ‘Field Guide to the Freshwater Fishes of Australia.’ (Western Australian Museum: Perth, WA, Australia.)

Bailey  R. M.Gans  C. (1998 ). Two new synbranchid fishes, Monopterus roseni from Peninsular India and M. desilvai from Sri Lanka. Occasional Papers of the Museum of Zoology University of Michigan 726 , 118.

Barnett, J. C., and Commander, D. P. (1985). Hydrogeology of the Western Fortescue Valley, Pilbara region, Western Australia. Geological Survey of Western Australia, Geological Survey Record 1986/8, Perth, WA, Australia.

Bishop, R. E., Humphreys, W. F., Cukrov, N., Zic, V., Boxshall, G. A., Cukrov, M., Iliffe, T. M., Krsinic, F., Moore, W. S., Pohlman, J. W., and Sket, B. (2015). ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. Journal of Crustacean Biology 35, 511–514.
‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting.Crossref | GoogleScholarGoogle Scholar |

Boutin, C., and Coineau, N. (1990). ‘Regression Model’, ‘Modele Biphase’ d’èvolution’ et origine des micro-organismes stygobies interstitiels continentaux. Revue de Micropaleontologie 33, 303–322.

Burridge, C. P., Craw, D., Fletcher, D., and Waters, J. M. (2008). Geological dates and molecular rates: fish DNA sheds light on time-dependency. Molecular Biology and Evolution 25, 624–633.
Geological dates and molecular rates: fish DNA sheds light on time-dependency.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER Version 6: User Manual/Tutorial.’ (PRIMER-E: Plymouth, UK.)

Collins, T. M., Trexler, J. C., Nico, L. G., and Rawlings, T. A. (2002). Genetic diversity in a morphologically conservative invasive taxon: multiple introductions of swamp eels to the southeastern United States. Conservation Biology 16, 1024–1035.
Genetic diversity in a morphologically conservative invasive taxon: multiple introductions of swamp eels to the southeastern United States.Crossref | GoogleScholarGoogle Scholar |

Department of the Environment Water Heritage and the Arts (2008). ‘Approved Conservation Advice for Ophisternon candidum (Blind Cave Eel).’ (DEWHA: Canberra, ACT, Australia.)

Department of Water (2012). Bungaroo Creek Water Reserve drinking water source protection plan. Water resource protection series report WRP 135. (Department of Water, Government of Western Australia: Perth, WA, Australia.) Available at: https://www.water.wa.gov.au/__data/assets/pdf_file/0004/4099/104046.pdf [Verified 11 May 2018].

Eschmeyer, W. N., Fricke, R., and Van der Laan, R. (2018). Catalog of fishes: genera, species, references. Available at http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp [verified 8 January 2018].

Geological Survey of Western Australia (2013). ‘Geology and Petroleum Prospectivity of Combined State Acreage Release Area L13-1/T13-1, Northern Carnarvon Basin, Western Australia.’ (GSWA: Perth, WA, Australia.)

Gopi, K. C. (2002). A new synbranchid fish, Monopterus digressus from Kerala, Peninsular India. Records of the Zoological Survey of India 100, 137–143.

Hubbs, C. L. (1938). Fishes from the caves of Yucatan. Carnegie Institute of Washington 491, 261–295.

Humphreys, W. F. (1994). The subterranean fauna of the Cape Range coastal plain, northwestern Australia. Report to the Australian Heritage Commission and the Western Australian Heritage Committee. Available at http://museum.wa.gov.au/sites/default/files/Humphreys-1994_OCR_Report_Coastal-Plain-Fauna-Cape-Range.pdf [Verified 14 May 2018].

Humphreys, W. F. (1999). The distribution of Australian cave fishes. Records of the Western Australian Museum 19, 469–472.

Humphreys, W. F. (2000). The hypogean fauna of the Cape Range peninsula and Barrow Island, northwestern Australia. In ‘Ecosystems of the World. Vol. 30. Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver, and W. F. Humphreys.) pp. 581–601. (Elsevier: Amsterdam, Netherlands.)

Humphreys, W. F. (2001). Milyeringa veritas Whitley 1945 (Eleotridae), a remarkably versatile cave fish from the arid tropics of northwestern Australia. Environmental Biology of Fishes 62, 297–313.
Milyeringa veritas Whitley 1945 (Eleotridae), a remarkably versatile cave fish from the arid tropics of northwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F., and Adams, M. (1991). The subterranean aquatic fauna of the North West Cape peninsula, Western Australia. Records of the Western Australian Museum 15, 383–411.

Humphreys, W. F., and Feinberg, M. N. (1995). Food of the blind cave fishes of northwestern Australia. Records of the Western Australian Museum 17, 29–33.

Jaume, D., Boxshall, G. A., and Humphreys, W. F. (2001). New stygobiont copepods (Calanoida; Misophrioida) from Bundera sinkhole, an anchialine cenote on north-western Australia. Zoological Journal of the Linnean Society 133, 1–24.
New stygobiont copepods (Calanoida; Misophrioida) from Bundera sinkhole, an anchialine cenote on north-western Australia.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar |

Larson, H. K., Foster, R., Humphreys, W. F., and Stevens, M. I. (2013). A new species of the blind cave gudgeon (Pisces: Gobioidei, Eleotridae) from Barrow Island, Western Australia, with a redescription M. veritas Whitley. Zootaxa 3616, 135–150.
A new species of the blind cave gudgeon (Pisces: Gobioidei, Eleotridae) from Barrow Island, Western Australia, with a redescription M. veritas Whitley.Crossref | GoogleScholarGoogle Scholar |

Matsumoto, S., Kon, T., Yamaguchi, M., Takeshima, H., Yamazaki, Y., Mukai, T., Kuriiwa, K., Kohda, M., and Nishida, M. (2010). Cryptic diversification of the swamp eel Monopterus albus in East and Southeast Asia, with special reference to the Ryukyuan populations. Ichthyological Research 57, 71–77.
Cryptic diversification of the swamp eel Monopterus albus in East and Southeast Asia, with special reference to the Ryukyuan populations.Crossref | GoogleScholarGoogle Scholar |

Mees, G. F. (1962). The subterranean freshwater fauna of Yardie Creek Station, North West Cape, Western Australia. Journal of the Royal Society of Western Australia 45, 24–32.

Morgan, D. L., Allen, M. G., Beatty, S. J., Keleher, J. J., and Ebner, B. C. (2014). ‘A Field Guide to the Freshwater Fishes of the Pilbara Province Western Australia.’ (Freshwater Fish Group, Murdoch University: Perth, WA, Australia.)

Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining ‘evolutionarily significant units’ for conservation.Crossref | GoogleScholarGoogle Scholar |

Mylroie, J., Mylroie, J., Humphreys, W., Brooks, D., and Middleton, G. (2017). Flank margin cave development and tectonic uplift, Cape Range, Australia. Journal of Caves and Karst Studies 79, 35–47.
Flank margin cave development and tectonic uplift, Cape Range, Australia.Crossref | GoogleScholarGoogle Scholar |

Page, T. J., Humphreys, W. F., and Hughes, J. M. (2008). Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS ONE 3, e1618.
Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris).Crossref | GoogleScholarGoogle Scholar |

Page, T. J., Hughes, J. M., Real, K. M., Stevens, M. I., King, R. A., and Humphreys, W. F. (2018). Allegory of the cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales. Marine Biodiversity 48, 1185–1202.
Allegory of the cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales.Crossref | GoogleScholarGoogle Scholar |

Perdices, A., Doadrio, I., and Bermingham, I. (2005). Evolutionary history of the synbranchid eels (Teleostei: Synbranchidae) in Central America and the Caribbean islands inferred from their molecular phylogeny. Molecular Phylogenetics and Evolution 37, 460–473.
Evolutionary history of the synbranchid eels (Teleostei: Synbranchidae) in Central America and the Caribbean islands inferred from their molecular phylogeny.Crossref | GoogleScholarGoogle Scholar |

Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E., and Williams, F. (2014). Sea-level and deep-sea-temperature variability over the last 5.3 million years. Nature 508, 477–482.
Sea-level and deep-sea-temperature variability over the last 5.3 million years.Crossref | GoogleScholarGoogle Scholar |

Romero, A., and Paulson, K. M. (2001). It’s a wonderful hypogean life: a guide to the troglomorphic fishes of the world. Environmental Biology of Fishes 62, 13–41.
It’s a wonderful hypogean life: a guide to the troglomorphic fishes of the world.Crossref | GoogleScholarGoogle Scholar |

Rosen, D. E., and Greenwood, P. H. (1976). A fourth Neotropical species of synbranchid eel and the phylogeny and systematics of synbranchiform fishes. Bulletin of the American Museum of Natural History 157, 1–69.

Talwar, P. K. (1991). Monopterus eapeni n. sp. In ‘Inland Fishes of India and Adjacent Countries’, Vol. 2. (Eds P. K. Talwar and A. G. Jhingran.) pp. 774–780. (Oxford & IBH Publishing Co.: New Delhi, India.)

Torres, R. A., Roper, J. J., Foresti, F., and Oliveira, C. (2005). Surprising genomic diversity in the Neotropical fish Synbranchus marmoratus (Teleostei: Synbranchidae): how many species? Neotropical Ichthyology 3, 277–284.
Surprising genomic diversity in the Neotropical fish Synbranchus marmoratus (Teleostei: Synbranchidae): how many species?Crossref | GoogleScholarGoogle Scholar |

Valdez-Moreno, M., Ivanova, N. V., Elias-Guttierrez, M., Contreras-Balderas, S., and Hebert, P. D. N. (2009). Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes. Journal of Fish Biology 74, 377–402.
Probing diversity in freshwater fishes from Mexico and Guatemala with DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Wager, R. (1996). Ophisternon candidum (blind cave eel). In ‘The IUCN Red List of Threatened Species 1996’, e.T15386A4555042. (International Union for Conservation of Nature) Available at http://www.iucnredlist.org/details/15386/0 [Verified 11 May 2018].

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar |

Wilke, T., Schultheiß, R., and Albrecht, C. (2009). As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27, 25–45.
As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates.Crossref | GoogleScholarGoogle Scholar |

Zuiew, B. (1793). Biga Mvraenarvm, novae species descriptae. Nova Acta Academiae Scientiarum Imperialis Petropolitanae 7, 296–301.