Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Distance decay as a descriptor of the diatom compositional variation in tropical reservoirs

Gisele C. Marquardt A C , Saúl Blanco B and Carlos E. de M. Bicudo A
+ Author Affiliations
- Author Affiliations

A Instituto de Botânica, Department of Ecology, Avenida Miguel Estéfano 3687, 04301–012, São Paulo, SP, Brazil.

B Institute of the Environment, La Serna, 58, E-24007 León, Spain.

C Corresponding author. Email: giselecmarquardt@gmail.com

Marine and Freshwater Research 69(1) 105-113 https://doi.org/10.1071/MF17003
Submitted: 9 January 2017  Accepted: 18 July 2017   Published: 8 September 2017

Abstract

In the present study, distance decay was used as a descriptor of the compositional variation in diatom communities’ similarity between different habitats (phytoplankton and surface sediment) and seasons (summer and winter; only for phytoplankton) along a geographical gradient of ~64 km over six reservoirs located in south-east Brazil. Whether rates of decay in similarity changed with distance in tropical biological communities was tested, and the degree to which dispersal (geographic distance) and niche (habitat association) processes explain variation in the diatom communities was estimated. In addition, whether the diatom assemblage captured in the surface sediment reflected the water column assemblage events was evaluated. Distance–decay curves were estimated using linear regressions. Partial Mantel tests were performed to examine the significance of relationships among the biological, environmental and spatial datasets. Similarity decreased significantly with distance between habitats and seasons, but the results were not statistically significant for surface sediment assemblages. All diatom communities were controlled more by limited dispersal than by environmental factors, probably as a result of the water quality and scale of the study area.

Additional keywords: Brazil, dispersal, floristic similarity, Mantel test, phytoplankton, sediment surface.


References

American Public Health Association (2005). ‘Standard Methods for the Examination of Water and Wastewater’, 21st edn. (APHA: Washington DC, USA.)

Andersen, M. K., Turner, B. L., and Dalling, J. W. (2010). Soil-based habitat partitioning in understorey palms in lower montane tropical forests. Journal of Biogeography 37, 278–292.
Soil-based habitat partitioning in understorey palms in lower montane tropical forests.Crossref | GoogleScholarGoogle Scholar |

Astorga, A., Oksanen, J., Luoto, M., Soininen, J., Virtanen, R., and Muotka, T. (2012). Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Global Ecology and Biogeography 21, 365–375.
Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules?Crossref | GoogleScholarGoogle Scholar |

Baas-Becking, L. G. M. (Trans.) (1934). ‘Geobiology or Introduction to Environmental Science.’ (W. P. Van Stockum & Zoon: The Hague, Netherlands.) [Translated from Dutch].

Bahram, M., Kõljalg, U., Courty, P., Diédhiou, A. G., Kjøller, R., Põlme, S., Ryberg, M., Veldre, V., and Tedersoo, L. (2013). The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology 101, 1335–1344.
The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales.Crossref | GoogleScholarGoogle Scholar |

Battarbee, R. W. (1984). Diatom analysis and the acidification of lakes. Philosophical Transactions of the Royal Society – B. Biological Sciences 305, 451–477.
Diatom analysis and the acidification of lakes.Crossref | GoogleScholarGoogle Scholar |

Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L., and Juggins, S. (2001). Diatoms. In ‘Tracking Environmental Change using Lake Sediments. Vol. 3: Terrestrial, Algal, and Siliceous Indicators’. (Eds J. P. Smol, H. J. B. Birks, and W. M. Last.) pp. 155–202. (Kluwer: Dordrecht, Netherlands.)

Bennion, H. (1995). Surface–sediment diatom assemblages in shallow, artificial, enriched ponds and implications for reconstructing trophic status. Diatom Research 10, 1–19.
Surface–sediment diatom assemblages in shallow, artificial, enriched ponds and implications for reconstructing trophic status.Crossref | GoogleScholarGoogle Scholar |

Bicudo, D. C. (1990). Considerações sobre metodologias de contagem de algas do perifíton. Acta Limnologica Brasiliensia 3, 459–475.

Bicudo, D. C., Tremarin, P. I., Almeida, P. D., Zorzal-Almeida, S., Wengrat, S., Faustino, S. B., Costa, L. F., Bartozek, E. C. R., Rocha, A. C. R., Bicudo, C. E. M., and Morales, E. A. (2016). Ecology and distribution of Aulacoseira species (Bacillariophyta) in tropical reservoirs from Brazil. Diatom Research 31, 199–215.
Ecology and distribution of Aulacoseira species (Bacillariophyta) in tropical reservoirs from Brazil.Crossref | GoogleScholarGoogle Scholar |

Boeff, K. A., Strock, K. E., and Saros, J. E. J. (2016). Evaluating planktonic diatom response to climate change across three lakes with differing morphometry. Journal of Paleolimnology 56, 33–47.
Evaluating planktonic diatom response to climate change across three lakes with differing morphometry.Crossref | GoogleScholarGoogle Scholar |

Bottin, M., Soininen, J., Ferrol, M., and Tison-Rosebery, J. (2014). Do spatial patterns of benthic diatom assemblages vary across regions and years? Freshwater Science 33, 402–416.
Do spatial patterns of benthic diatom assemblages vary across regions and years?Crossref | GoogleScholarGoogle Scholar |

California Academy of Sciences (2011). Catalogue of diatom names. Available at http://researcharchive.calacademy.org/research/diatoms/names/index.asp [Verified 1 March 2017].

Condit, R., Pitman, N., Leigh, E. G. J., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Salomón, A., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., and Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science 295, 666–669.
Beta-diversity in tropical forest trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptF2ntg%3D%3D&md5=181151ed34c4545b60635bdd3dd24606CAS |

Costa, F. R. C., Guillaumet, J., Lima, A. P., and Pereira, O. S. (2009). Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science 20, 69–78.
Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest.Crossref | GoogleScholarGoogle Scholar |

Eiserhardt, W. L., Svenning, J. C., Kissling, W. D., and Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany 108, 1391–1416.
Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales.Crossref | GoogleScholarGoogle Scholar |

Endara, M. J., and Jaramillo, J. J. (2011). The influence of microtopography and soil properties on the distribution of the speciose genus of trees, Inga (Fabaceae: Mimosoidea), in Ecuadorian Amazonia. Biotropica 43, 157–164.
The influence of microtopography and soil properties on the distribution of the speciose genus of trees, Inga (Fabaceae: Mimosoidea), in Ecuadorian Amazonia.Crossref | GoogleScholarGoogle Scholar |

Faustino, S. B., Fontana, L., Bartozek, E. C. R., Bicudo, C. E. M., and Bicudo, D. C. (2016). Composition and distribution of diatom assemblages from core and surface sediments of a water supply reservoir in southeastern Brazil. Biota Neotropica 16, e20150129.
Composition and distribution of diatom assemblages from core and surface sediments of a water supply reservoir in southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Fenchel, T., and Finlay, B. J. (2004). The ubiquity of small species: patterns of local and global diversity. Bioscience 54, 777–784.
The ubiquity of small species: patterns of local and global diversity.Crossref | GoogleScholarGoogle Scholar |

Fritz, S. C. (1990). Twentieth century salinity and water level fluctuations in Devil’s Lake, North Dakota: test of a diatom based transfer function. Limnology and Oceanography 35, 1771–1781.
Twentieth century salinity and water level fluctuations in Devil’s Lake, North Dakota: test of a diatom based transfer function.Crossref | GoogleScholarGoogle Scholar |

Fritz, S. C., Juggins, S., Battarbee, R. W., and Engstrom, D. R. (1991). Reconstruction of past changes in salinity and climate using a diatom based transfer function. Nature 352, 706–708.
Reconstruction of past changes in salinity and climate using a diatom based transfer function.Crossref | GoogleScholarGoogle Scholar |

Goldenberg Vilar, A., van Dam, H., Van Loon, E. E., Vonk, J. A., Van Der Geest, H. G., and Admiraal, W. (2014). Eutrophication decreases distance decay of similarity in diatom communities. Freshwater Biology 59, 1522–1531.
Eutrophication decreases distance decay of similarity in diatom communities.Crossref | GoogleScholarGoogle Scholar |

Grenouillet, G., Brosse, S., Tudeque, L., Lek, S., Baraillé, Y., and Loot, G. (2008). Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Diversity & Distributions 14, 592–603.
Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient.Crossref | GoogleScholarGoogle Scholar |

Hammer, O., Harper, D. A. T., and Ryan, P. D. (2001). PAST: Paleontological Statistic software package for education and data analysis. Palaeontologia Electronica 4, 1–9.

Hazard, C., Gosling, P., Van der Gast, C. J., Mitchell, D. T., Doohan, F. M., and Bending, G. D. (2013). The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. The ISME Journal 7, 498–508.
The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFOnsbk%3D&md5=8f3bae886d69b1b256d78857377789e3CAS |

Heino, J., Ilmonen, J., Kotanen, J., Mykrä, H., Paasivirta, L., Soininen, J., and Virtanen, R. (2009). Surveying biodiversity in protected and managed areas: algae, macrophytes and macroinvertebrates in boreal forest streams. Ecological Indicators 9, 1179–1187.
Surveying biodiversity in protected and managed areas: algae, macrophytes and macroinvertebrates in boreal forest streams.Crossref | GoogleScholarGoogle Scholar |

Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., and Bini, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60, 845–869.
Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects.Crossref | GoogleScholarGoogle Scholar |

Henry, R., and Nogueira, M. G. (1999). A Represa de Jurumirim (São Paulo): Primeira síntese sobre o conhecimento limnológico e uma proposta preliminar de manejo ambiental. In ‘Ecologia de Reservatórios: Estrutura, Função e Aspectos Sociais’. (Ed. R. Henry.) pp. 651–685. (Fapesp/Fundibio: Botucatu, Brazil.)

Hubbell, S. P. (2001). ‘The Unified Neutral Theory of Biodiversity and Biogeography.’ (Princeton University Press: Princeton, NJ, USA.)

Jones, M. M., Tuomisto, H., Clark, D. B., and Olivas, P. (2006). Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. Journal of Ecology 94, 181–195.
Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVClsLk%3D&md5=1706e7c7a46a083f321530bce35290e3CAS |

Krammer, K. (2000). ‘Diatoms of Europe.’ (Ed. H. Lange-Bertalot.) (A. R. G. Gantner Verlag: Ruggell, Liechtenstein.)

Lamparelli, M. C. (2004). Graus de trofia em corpos d’água do Estado de São Paulo: Avaliação dos métodos de monitoramento. Ph.D. Thesis, Universidade de São Paulo.

Lange-Bertalot, H., Bak, M., and Witkowski, A. (2011). ‘Diatoms of Europe.’ (Ed. H. Lange-Bertalot.) (A. R. G. Gantner Verlag: Ruggell, Liechtenstein.)

Legendre, P., Borcard, D., and Peres-Neto, P. R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75, 435–450.
Analyzing beta diversity: partitioning the spatial variation of community composition data.Crossref | GoogleScholarGoogle Scholar |

Ludwig, T. A. V., Tremarin, P. I., Becker, V., and Torgan, L. C. (2008). Thalassiosira rudis sp. nov. (Coscinodiscophyceae): a new freshwater species. Diatom Research 23, 389–399.
Thalassiosira rudis sp. nov. (Coscinodiscophyceae): a new freshwater species.Crossref | GoogleScholarGoogle Scholar |

MacArthur, R. H. (1969). Patterns of communities in the tropics. Biological Journal 1, 19–30.

Mann, D. G. (1999). The species concept in diatoms. Phycologia 38, 437–495.
The species concept in diatoms.Crossref | GoogleScholarGoogle Scholar |

Martiny, J. B. H., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., Ovreås, L., Reysenbach, A. L., Smith, V. H., and Staley, J. T. (2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews – Microbiology 4, 102–112.
Microbial biogeography: putting microorganisms on the map.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVyhsA%3D%3D&md5=47196b9a87047a29a2fea2097c6cb861CAS |

Martiny, J. B., Eisen, J. A., Penn, K., Allison, S. D., and Horner-Devine, M. C. (2011). Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences of the United States of America 108, 7850–7854.
Drivers of bacterial β-diversity depend on spatial scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVSktLk%3D&md5=2dce84e464090ed9f421fa0dc91a41bdCAS |

Metzeltin, D., Lange-Bertalot, H., and García-Rodríguez, F. (2005). ‘Iconographia Diatomologica.’ (Ed. H. Lange-Bertalot.) (A.R.G. Gantner Verlag K.G.: Ruggell, Liechtenstein.)

Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Kenfack, D., Thomas, D., Valencia, R., and Green, J. L. (2008). A general framework for the distance-decay of similarity in ecological communities. Ecology Letters 11, 904–917.
A general framework for the distance-decay of similarity in ecological communities.Crossref | GoogleScholarGoogle Scholar |

Nekola, J. C., and White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867–878.
The distance decay of similarity in biogeography and ecology.Crossref | GoogleScholarGoogle Scholar |

Normand, S., Vormisto, J., Svenning, J. C., Grandez, C., and Balslev, H. (2006). Geographical and environmental controls of palm beta diversity in paleo-riverine terrace forests in Amazonian Peru. Plant Ecology 186, 161–176.
Geographical and environmental controls of palm beta diversity in paleo-riverine terrace forests in Amazonian Peru.Crossref | GoogleScholarGoogle Scholar |

Oliva, M. E., and González, M. T. (2005). The decay of similarity over geographical distance in parasite communities of marine fishes. Journal of Biogeography 32, 1327–1332.
The decay of similarity over geographical distance in parasite communities of marine fishes.Crossref | GoogleScholarGoogle Scholar |

Palmiotto, P. A., Davies, S. J., Vogt, K. A., Ashton, M. S., Vogt, D. J., and Ashton, P. S. (2004). Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology 92, 609–623.
Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo.Crossref | GoogleScholarGoogle Scholar |

Pappas, J. L., and Stoermer, E. F. (1996). Quantitative method for determining a representative algal sample count. Journal of Phycology 32, 693–696.
Quantitative method for determining a representative algal sample count.Crossref | GoogleScholarGoogle Scholar |

Qian, H., Ricklefs, R. E., and White, P. S. (2005). Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters 8, 15–22.
Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America.Crossref | GoogleScholarGoogle Scholar |

Sabbe, K., Vanhoutte, K., Lowe, R. L., Bergey, E. A., Biggs, J. F. B., Francoeur, S., Hodgson, D., and Vyverman, W. (2001). Six new Actinella (Bacillariophyta) species from Papua New Guinea, Australia and New Zealand: further evidence for widespread diatom endemism in the Australasian region. European Journal of Phycology 36, 321–340.
Six new Actinella (Bacillariophyta) species from Papua New Guinea, Australia and New Zealand: further evidence for widespread diatom endemism in the Australasian region.Crossref | GoogleScholarGoogle Scholar |

Secretaria do Meio Ambiente, Fundação Florestal do Estado de São Paulo (2010). Parque Estadual do Jurupará. Resumo Executivo. Plano de Manejo. Governo do Estado de São Paulo, São Paulo, SP, Brazil.

Shurin, J. B., Cottenie, K., and Hillebrand, H. (2009). Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159, 151–159.
Spatial autocorrelation and dispersal limitation in freshwater organisms.Crossref | GoogleScholarGoogle Scholar |

Smol, J. P. (2008). ‘Pollution of Lakes and Rivers: a Paleoenvironmental Perspective’, 2nd edn. (Blackwell Publishing: Oxford.)

Soininen, J., Paavola, R., and Muotka, T. (2004). Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27, 330–342.
Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients.Crossref | GoogleScholarGoogle Scholar |

Soininen, J., McDonald, R., and Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 3–12.
The distance decay of similarity in ecological communities.Crossref | GoogleScholarGoogle Scholar |

Stevenson, R. J. (1996). Patterns of benthic algae in aquatic ecosystems. In ‘Algal Ecology: Freshwater Benthic Ecosystems’. pp. 03-26. (Academic Press: San Diego, CA, USA.)

Strayer, D. L., and Dudgeon, D. (2010). Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29, 344–358.
Freshwater biodiversity conservation: recent progress and future challenges.Crossref | GoogleScholarGoogle Scholar |

Thompson, R., and Townsend, C. (2006). A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology 75, 476–484.
A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates.Crossref | GoogleScholarGoogle Scholar |

Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography 46, 234–240.
A computer movie simulating urban growth in the Detroit region.Crossref | GoogleScholarGoogle Scholar |

Tundisi, J. G. (1999). ‘Limnologia no século XXI: perspectivas e desafios.’ (Instituto Internacional de Limnologia: São Carlos, Brazil.)

Tuomisto, H., Ruokolainen, K., and Yli-Halla, M. (2003). Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241–244.
Dispersal, environment, and floristic variation of western Amazonian forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Gktg%3D%3D&md5=eeff6df7ce0f3d226196b547dcb6cb43CAS |

Tuomisto, H., Ruokolainen, L., and Ruokolainen, K. (2012). Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results. Ecography 35, 961–971.
Modelling niche and neutral dynamics: on the ecological interpretation of variation partitioning results.Crossref | GoogleScholarGoogle Scholar |

Vanormelingen, P., Verleyen, E., and Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17, 393–405.
The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism.Crossref | GoogleScholarGoogle Scholar |

Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review 23, 88–93.
Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations.Crossref | GoogleScholarGoogle Scholar |

Vormisto, J., Svenning, J., Hall, P., and Baslev, H. (2004). Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazonian basis. Journal of Ecology 92, 577–588.
Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazonian basis.Crossref | GoogleScholarGoogle Scholar |

Vyverman, W., Verleyen, E., Sabbe, K., Vanhoutte, K., Sterken, M., Hodgson, D. A., Mann, D. G., Juggins, S., Van De Vijver, B., Jones, V., Flower, R., Roberts, D., Chepurnov, V. A., Kilroy, C., Vanormelingen, P., and De Wever, A. (2007). Historical processes constrain patterns in global diatom diversity. Ecology 88, 1924–1931.
Historical processes constrain patterns in global diatom diversity.Crossref | GoogleScholarGoogle Scholar |

Vyverman, W., Verleyen, E., Wilmotte, A., Hodgson, D. A., Willems, A., Peeters, K., Van de Vijver, B., De Wever, A., Leliaert, F., and Sabbe, K. (2010). Evidence for widespread endemism among Antarctic micro-organisms. Polar Science 4, 103–113.
Evidence for widespread endemism among Antarctic micro-organisms.Crossref | GoogleScholarGoogle Scholar |

Wetzel, C. E., Bicudo, D. C., Ector, L., Lobo, E. A., Soininen, J., Landeiro, V. L., and Bini, L. M. (2012). Distance decay of similarity in Neotropical diatom communities. PLoS One 7, e45071.
Distance decay of similarity in Neotropical diatom communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSjt73F&md5=b6a3b37ad24ee8ec4c5aa9bb69daa70eCAS |

Winegardner, A. K., Beisner, E., Legendre, P., and Gregory-Eaves, I. (2015). Are the landscape-level drivers of water column and surface sediment diatoms different? Freshwater Biology 60, 267–281.
Are the landscape-level drivers of water column and surface sediment diatoms different?Crossref | GoogleScholarGoogle Scholar |