Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Drivers of sulfide intrusion in Zostera muelleri in a moderately affected estuary in south-eastern Australia

Marianne Holmer A D , William W. Bennett B , Angus J. P. Ferguson C , Jaimie Potts C , Harald Hasler-Sheetal A and David T. Welsh B
+ Author Affiliations
- Author Affiliations

A Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

B Environmental Futures Research Institute, Griffith School of Environment, Griffith University Gold Coast campus, Qld 4222, Australia.

C Coastal Waters Unit, Science Division, New South Wales Office of Environment and Heritage, Sydney, NSW 2022, Australia.

D Corresponding author. Email: holmer@biology.sdu.dk

Marine and Freshwater Research 68(11) 2134-2144 https://doi.org/10.1071/MF16402
Submitted: 3 December 2016  Accepted: 24 March 2017   Published: 8 June 2017

Abstract

The seagrass Zostera muelleri Irmisch ex Asch. is abundant in estuaries in Australia and is under pressure from coastal developments. We studied sulfide intrusion in Z. muelleri along a gradient of anthropogenic impact at five stations in the Wallis Lake estuary, Australia. Results showed differences in sediment biogeochemical conditions, seagrass metrics as well as nutrient content and sulfide intrusion along the gradient from the lower estuary (affected) to the lagoon (unaffected). Sulfide intrusion was driven by complex interactions and related to changes in seagrass morphology and sediment biogeochemistry and was modified by the exposure to wind and wave action. The sediments in the lower estuary had high contributions from phytoplanktonic detritus, whereas the organic pools in the lagoon were dominated by seagrass detritus. Despite high concentrations of organic matter, sulfide intrusion was lower at stations dominated by seagrass detritus, probably because of lower sulfide pressure from the less labile nature of organic matter. Porewater diffusive gradients in thin-film (DGT) sulfide samplers showed efficient sulfide reoxidation in the rhizosphere, with high sulfur incorporation in the plants from sedimentary sulfides being likely due to sulfate uptake from reoxidised sulfide. This is a unique adaptation of Z. muelleri, which allows high productivity in estuarine sediments.

Additional keywords: nutrient enrichment, seagrass morphology, sediment biogeochemistry.


References

Abal, E. G., Loneragan, N., Bowen, P., Perry, C. J., Udy, J. W., and Dennison, W. C. (1994). Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity. Journal of Experimental Marine Biology and Ecology 178, 113–129.
Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity.Crossref | GoogleScholarGoogle Scholar |

Baden, S., Gullström, M., Lundén, B., Pihl, L., and Rosenberg, R. (2003). Vanishing weagrass (Zostera marina, L.) in Swedish coastal waters. Ambio 32, 374–377.
Vanishing weagrass (Zostera marina, L.) in Swedish coastal waters.Crossref | GoogleScholarGoogle Scholar |

Borja, A., Elliott, M., Andersen, J. H., Cardoso, A. C., Carstensen, J., Ferreira, J. G., Heiskanen, A.-S., Marques, J. C., Neto, J. M., Teixeira, H., Uusitalo, L., Uyarra, M. C., and Zampoukas, N. (2013). Good Environmental Status of marine ecosystems: what is it and how do we know when we have attained it? Marine Pollution Bulletin 76, 16–27.
Good Environmental Status of marine ecosystems: what is it and how do we know when we have attained it?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOntb7K&md5=fcbc8e659623b46660e4b3fb9cb04eefCAS |

Boström, C., Baden, S., Bockelmann, A.-C., Dromph, K., Fredriksen, S., Gustafsson, C., Krause-Jensen, D., Möller, T., Nielsen, S. L., Olesen, B., Olsen, J., Pihl, L., and Rinde, E. (2014). Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquatic Conservation 24, 410–434.
Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation.Crossref | GoogleScholarGoogle Scholar |

Brodersen, K. E., Nielsen, D. A., Ralph, P. J., and Kühl, M. (2015). Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytologist 205, 1264–1276.
Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnslagtQ%3D%3D&md5=c044002fc052004dae4c6d66b2e01d58CAS |

Burkholder, J. A., Tomasko, D. A., and Touchette, B. W. (2007). Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology 350, 46–72.
Seagrasses and eutrophication.Crossref | GoogleScholarGoogle Scholar |

Cline, J. D. (1969). Spectrophotomitric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14, 454–458.
Spectrophotomitric determination of hydrogen sulfide in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksFegu70%3D&md5=ab4a4b3c971de028ee994c04bc199635CAS |

de Wit, R., Stal, L. J., Lomstein, B. A., Herbert, R. A., van Gemerden, H., Viaroli, P., Cecherelli, V.-U., Rodríguez-Valera, F., Bartoli, M., Giordani, G., Azzoni, R., Schaub, B., Welsh, D. T., Donnelly, A., Cifuentes, A., Antón, J., Finster, K., Nielsen, L. B., Pedersen, A.-G. U., Neubauer, A. T., Colangelo, M. A., and Heijs, S. K. (2001). ROBUST: the role of buffering capacities in stabilising coastal lagoon ecosystems. Continental Shelf Research 21, 2021–2041.
ROBUST: the role of buffering capacities in stabilising coastal lagoon ecosystems.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M. (2002). The future of seagrass meadows. Environmental Conservation 29, 192–206.
The future of seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M., Conley, D. J., Carstensen, J., and Sánchez-Camacho, M. (2009). Return to Neverland: shifting baselines affect eutrophication restoration targets. Estuaries and Coasts 32, 29–36.
Return to Neverland: shifting baselines affect eutrophication restoration targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFCgtg%3D%3D&md5=8a77afb6d9546694f2a4ebfefc3f9eccCAS |

Ferguson, A. J. P., Gruber, R. K., Orr, M., and Scanes, P. (2016). Morphological plasticity in Zostera muelleri across light, sediment, and nutrient gradients in Australian temperate coastal lakes. Marine Ecology Progress Series 556, 91–104.
Morphological plasticity in Zostera muelleri across light, sediment, and nutrient gradients in Australian temperate coastal lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFaksrrE&md5=3ed4231948d8a8fcf8b847ce7d1da37dCAS |

Fiebig, S. (2010). Summary of ecological information for the Wallis Lake potential RAMSAR site. Department of Environment and Climate Change, Forster, NSW, Australia.

Fossing, H., and Jørgensen, B. B. (1989). Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8, 205–222.
Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXht1ClurY%3D&md5=02f009116bb1b7e0412499318dcfc8b3CAS |

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marba, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., and Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5, 505–509.
Seagrass ecosystems as a globally significant carbon stock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntF2msbg%3D&md5=2f4481d9366f1c5c970b56f55841332bCAS |

Frederiksen, M. S., Holmer, M., Borum, J., and Kennedy, H. (2006). Temporal and spatial variation of sulfide invasion in eelgrass (Zostera marina) as reflected by its sulfur isotopic composition. Limnology and Oceanography 51, 2308–2318.
Temporal and spatial variation of sulfide invasion in eelgrass (Zostera marina) as reflected by its sulfur isotopic composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOju7fN&md5=563a9ba41d82127f7cd770309aad8b45CAS |

Glud, R. N. (2008). Oxygen dynamics of marine sediments. Marine Biology Research 4, 243–289.
Oxygen dynamics of marine sediments.Crossref | GoogleScholarGoogle Scholar |

Hansen, J. W., Udy, J. W., Perry, C. J., Dennison, W. C., and Lomstein, B. A. (2000). Effect of the seagrass Zostera capricorni on sediment microbial processes. Marine Ecology Progress Series 199, 83–96.
Effect of the seagrass Zostera capricorni on sediment microbial processes.Crossref | GoogleScholarGoogle Scholar |

Harris, G. (1996). Port Phillip Bay environmental study: final report. CSIRO, Canberra, ACT, Australia.

Hasler-Sheetal, H., and Holmer, M. (2015). Sulfide intrusion and detoxification in the seagrass Zostera marina. PLoS One 10, e0129136.
Sulfide intrusion and detoxification in the seagrass Zostera marina.Crossref | GoogleScholarGoogle Scholar |

Herbeck, L. S., Sollich, M., Unger, D., Holmer, M., and Jennerjahn, T. C. (2014). Impact of pond aquaculture effluents on seagrass performance in NE Hainan, tropical China. Marine Pollution Bulletin 85, 190–203.
Impact of pond aquaculture effluents on seagrass performance in NE Hainan, tropical China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVaktbjP&md5=d8d1280141c93cef01b3f6924f689d0bCAS |

Holmer, M. (2009). Productivity and biogeochemical cycling in seagrass ecosystems. In ‘Coastal Wetlands: an Integrated Ecosystem Approach’. (Eds G. M. E. Perillo, E. Wolanski, D. R. Cahoon, and M. M. Brinson.) pp. 377–401. (Pergamon Press: Amsterdam, Netherlands.)

Holmer, M., and Hasler-Sheetal, H. (2014). Sulfide intrusion in seagrasses assessed by stable sulfur isotopes; a synthesis of current results. Frontiers of Materials Science 1, 64.

Holmer, M., and Kendrick, G. (2013). High sulfide intrusion in five temperate seagrasses growing under contrasting sediment conditions. Estuaries and Coasts 36, 116–126.
High sulfide intrusion in five temperate seagrasses growing under contrasting sediment conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFSgtLbN&md5=569ff8bb293e2a7c56dcbde43cc96741CAS |

Holmer, M., Duarte, C. M., Boschker, E., and Barrón, C. (2004). Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquatic Microbial Ecology 36, 227–237.
Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments.Crossref | GoogleScholarGoogle Scholar |

Holmer, M., Georgiev, V. G., and Karamfilov, V. K. (2016). Effect of point source of untreated sewage waters on seagrass (Zostera marina and Z. noltii) beds in the South-Western Black Sea. Aquatic Botany 133, 1–9.
Effect of point source of untreated sewage waters on seagrass (Zostera marina and Z. noltii) beds in the South-Western Black Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xns1ersbo%3D&md5=caf8652de0eeb30513b250d0ad729e3eCAS |

Jensen, S. I., Kühl, M., Glud, R. N., Jørgensen, L. B., and Priemé, A. (2005). Oxic microzones and radial oxygen loss from roots of Zostera marina. Marine Ecology Progress Series 293, 49–58.
Oxic microzones and radial oxygen loss from roots of Zostera marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1Cqt7k%3D&md5=57803cee4abfb82323e0108ff7a98c1fCAS |

Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., and Middelburg, J. J. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles 24, GB4026.
Seagrass sediments as a global carbon sink: Isotopic constraints.Crossref | GoogleScholarGoogle Scholar |

Kerr, E. A., and Strother, S. (1990). Seasonal changes in standing crop of Zostera muelleri in south-eastern Australia. Aquatic Botany 38, 369–376.
Seasonal changes in standing crop of Zostera muelleri in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Kohlmeier, D., Pilditch, C. A., Bornman, J. F., and Bischof, K. (2014). Site specific differences in morphometry and photophysiology in intertidal Zostera muelleri meadows. Aquatic Botany 116, 104–109.
Site specific differences in morphometry and photophysiology in intertidal Zostera muelleri meadows.Crossref | GoogleScholarGoogle Scholar |

Koren, K., Brodersen, K. E., Jakobsen, S. L., and Kühl, M. (2015). Optical sensor nanoparticles in artificial sediments: a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses. Environmental Science & Technology 49, 2286–2292.
Optical sensor nanoparticles in artificial sediments: a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVCgsbg%3D&md5=fdfc52946285c23bcc02dbb1edcdafa9CAS |

Marbà, N., Calleja, M., Duarte, C., Álvarez, E., Díaz-Almela, E., and Holmer, M. (2007). Iron additions reduce sulfide intrusion and reverse seagrass (Posidonia oceanica) decline in carbonate sediments. Ecosystems 10, 745–756.
Iron additions reduce sulfide intrusion and reverse seagrass (Posidonia oceanica) decline in carbonate sediments.Crossref | GoogleScholarGoogle Scholar |

Mascaró, O., Valdemarsen, T., Holmer, M., Perez, M., and Romero, J. (2009). Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival. Journal of Experimental Marine Biology and Ecology 373, 26–34.
Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival.Crossref | GoogleScholarGoogle Scholar |

Matheson, F. E., and Schwarz, A. M. (2007). Growth responses of Zostera capricorni to estuarine sediment conditions. Aquatic Botany 87, 299–306.
Growth responses of Zostera capricorni to estuarine sediment conditions.Crossref | GoogleScholarGoogle Scholar |

Mellors, J., Waycott, M., and Marsh, H. (2005). Variation in biogeochemical parameters across intertidal seagrass meadows in the central Great Barrier Reef region. Marine Pollution Bulletin 51, 335–342.
Variation in biogeochemical parameters across intertidal seagrass meadows in the central Great Barrier Reef region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2gur4%3D&md5=aa51fece08ffedb418e36abd0212ce02CAS |

Møhlenberg, F. (1999). Effect of meteorology and nutrient load on oxygen depletion in a Danish micro-tidal estuary. Aquatic Ecology 33, 55–64.
Effect of meteorology and nutrient load on oxygen depletion in a Danish micro-tidal estuary.Crossref | GoogleScholarGoogle Scholar |

Oakes, J. M., and Connolly, R. M. (2004). Causes of sulfur isotope variability in the seagrass, Zostera capricorni. Journal of Experimental Marine Biology and Ecology 302, 153–164.
Causes of sulfur isotope variability in the seagrass, Zostera capricorni.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Sju7c%3D&md5=9799e4e678adbd8149d7ad4092c6a98cCAS |

Pagès, A., Welsh, D. T., Robertson, D., Panther, J. G., Schäfer, J., Tomlinson, R. B., and Teasdale, P. R. (2012). Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni. Estuarine, Coastal and Shelf Science 115, 282–290.
Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni.Crossref | GoogleScholarGoogle Scholar |

Peralta, G., Pérez-Lloréns, J., Hernández, I., Brun, F., Vergara, J., Bartual, A., Gálvez, J., and García, C. (2000). Morphological and physiological differences between two morphotypes of Zostera noltii Hornem. from the south-western Iberian Peninsula. Helgoland Marine Research 54, 80–86.
Morphological and physiological differences between two morphotypes of Zostera noltii Hornem. from the south-western Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar |

Pérez, M., García, T., Invers, O., and Ruiz, J. M. (2008). Physiological responses of the seagrass Posidonia oceanica as indicators of fish farm impact. Marine Pollution Bulletin 56, 869–879.
Physiological responses of the seagrass Posidonia oceanica as indicators of fish farm impact.Crossref | GoogleScholarGoogle Scholar |

Robertson, D., Teasdale, P. R., and Welsh, D. T. (2008). A novel gel-based technique for the high resolution, two-dimensional determination of iron(II) and sulfide in sediment. Limnology and Oceanography, Methods 6, 502–512.
A novel gel-based technique for the high resolution, two-dimensional determination of iron(II) and sulfide in sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWqs77M&md5=3c489626498e495455166c73b60c09aeCAS |

Roca, G., Alcoverro, T., de Torres, M., Manzanera, M., Martínez-Crego, B., Bennett, S., Farina, S., Pérez, M., and Romero, J. (2015). Detecting water quality improvement along the Catalan coast (Spain) using stress-specific biochemical seagrass indicators. Ecological Indicators 54, 161–170.
Detecting water quality improvement along the Catalan coast (Spain) using stress-specific biochemical seagrass indicators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktVGqtLk%3D&md5=5ecca5c4205c60063c6385143be3c8b9CAS |

Romero, J., Martinez-Crego, B., Alcoverro, T., and Perez, M. (2007). A multivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the water framework directive (WFD). Marine Pollution Bulletin 55, 196–204.
A multivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the water framework directive (WFD).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1equrrJ&md5=04c4e4ef68918ca5760253ec03b6ce1dCAS |

Roy, P. S., Williams, R. J., Jones, A. R., Yassini, I., Gibbs, P. J., Coates, B., West, R. J., Scanes, P. R., Hudson, J. P., and Nichol, S. (2001). Structure and function of south-east Australian estuaries. Estuarine, Coastal and Shelf Science 53, 351–384.
Structure and function of south-east Australian estuaries.Crossref | GoogleScholarGoogle Scholar |

Smith, C. S., and Heggie, D. T. (2003). Benthic nutrient fluxes in Smiths Lake, NSW. Record 2003, 1–35.

Sørensen, J. (1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Applied and Environmental Microbiology 43, 319–324.

Stookey, L. L. (1970). Ferrozine: a new spectrophotometric reagent for iron. Analytical Chemistry 42, 779–781.
Ferrozine: a new spectrophotometric reagent for iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt1WjtL8%3D&md5=eff9e6f9d7bad06b32fc24fe402be306CAS |

Udy, J. W., and Dennison, W. C. (1997). Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. Journal of Experimental Marine Biology and Ecology 217, 253–277.
Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia.Crossref | GoogleScholarGoogle Scholar |

Waycott, M., Duarte, C. M., Carruthers, T. J., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslGjsbo%3D&md5=79e51fc66b01536df6e67db553f25e06CAS |