Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Baseline biogeochemical data from Australia’s continental margin links seabed sediments to water column characteristics

Lynda Radke A D , Tony Nicholas A , Peter A. Thompson B , Jin Li A , Eric Raes C , Matthew Carey A , Ian Atkinson A , Zhi Huang A , Janice Trafford A and Scott Nichol A
+ Author Affiliations
- Author Affiliations

A National Earth and Marine Observations Group, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia.

B CSIRO Marine and Atmospheric Research, Hobart, Tas. 7001, Australia.

C Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research Am Handelshafen 12, D-27570 Bremerhaven, Germany.

D Corresponding author. Email: lynda.radke@ga.gov.au

Marine and Freshwater Research 68(9) 1593-1617 https://doi.org/10.1071/MF16219
Submitted: 17 June 2016  Accepted: 10 November 2016   Published: 16 January 2017

Journal Compilation © CSIRO Publishing 2017 Open Access CC BY-NC-ND

Abstract

Surficial marine sediments are an important source of nutrients for productivity and biodiversity, yet the biogeochemistry of these sediments is poorly known in Australia. Seabed samples were collected at >350 locations in Australia’s western, northern and eastern continental margins during Federal Government surveys (2007–14). Parameters analysed included measures of organic matter (OM) source (δ13C, δ15N and C : N ratios), concentration (percentage total organic carbon, %TOC, and surface area-normalised TOC, OC : SA) and bioavailability (chlorin indices, total reactive chlorins, total oxygen uptake, total sediment metabolism (TSM), sediment oxygen demand (SOD) and SOD and TSM normalised against TOC). The aim of the present study was to summarise these biogeochemical ‘baseline’ data and make contextualised inferences about processes that govern the observed concentrations. The OM was primarily from marine sources and the OC : SA broadly reflected water column productivity (based on Moderate Resolution Imaging Spectroradiometer, MODIS). Approximately 40% of sediments were organic poor by global standards, reflecting seawater oligotrophy; ~12% were organic rich due to benthic production, high water column productivity and pockmark formation. OM freshness varied due to pigment degradation in water columns and dilution with refractory OM in reworked sediments. δ15N values confirmed the importance of N2 fixation to Timor Sea productivity, and point to recycling of fixed nitrogen within food chains in Western Australia.

Additional keywords: diazotroph, Fe, particulate organic carbon, total nitrogen, Trichodesmium.


References

Anderson, T. J., Nichol, S., Radke, L., Heap, A. D., Battershill, C., Hughes, M., Siwabessy, P. J., Barrie, V., Alvarez de Glasby, B., Tran, M., and Daniell, J. and Shipboard Party (2011). Seabed environments of the eastern Joseph Bonaparte Gulf, northern Australia: GA0325/Sol5117 – Post-survey report. Geoscience Australia Record 2011/08, Geoscience Australia, Canberra, ACT, Australia.

Arndt, S., Jørgesen, B. B., LaRowe, D. E., Middleburg, J. J., Pancost, R. D., and Regnier, P. (2013). Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Science Reviews 123, 53–86.
Quantifying the degradation of organic matter in marine sediments: a review and synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFOns78%3D&md5=db0302966a39f8175218f50a6a32172aCAS |

Bacon, M. P., Belastock, R. A., and Bothner, M. H. (1994). 210Pb balance and implications for particle transport on the continental shelf, US Middle Atlantic Bight. Deep-sea Research – II. Topical Studies in Oceanography 41, 511–535.
210Pb balance and implications for particle transport on the continental shelf, US Middle Atlantic Bight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVCrs7w%3D&md5=a292a28cee1b0438653930479922ac68CAS |

Barber, A., Lalonde, K., Mucci, A., and Gélinas, Y. (2014). The role of iron in the diagenesis of organic carbon and nitrogen in sediments: a long-term incubation experiment. Marine Chemistry 162, 1–9.
The role of iron in the diagenesis of organic carbon and nitrogen in sediments: a long-term incubation experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVKmt7w%3D&md5=0492d58034c3dc2bef06248114765fe9CAS |

Bax, N. J., Cleary, J., Donnelly, B., Dunn, D. C., Dunstan, P. K., Fuller, M., and Halpin, P. N. (2016). Results of efforts by the Convention on Biological Diversity to describe ecologically or biologically significant marine areas. Conservation Biology 30, 571–581.
Results of efforts by the Convention on Biological Diversity to describe ecologically or biologically significant marine areas.Crossref | GoogleScholarGoogle Scholar |

Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M. (2005). Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles 19, GB1006.
Carbon-based ocean productivity and phytoplankton physiology from space.Crossref | GoogleScholarGoogle Scholar |

Borissova, I., Lech, M. E., Jorgensen, D. C., Southby, C., Wang, L., Bernardel, G., Nicholas, W. A., Lescinsky, D. L., and Johnston, S. (2015). An integrated study of the CO2 storage potential in the offshore Vlaming Sub-Basin: results of the study undertaken as part of the NCIP program. Geoscience Australia Record 2015/09, Geoscience Australia, Canberra, ACT, Australia10.11636/RECORD.2015.009

Boudreau, B. P., Huettel, M., Forster, S., Jahnke, R. A., McLachlan, A., Middelburg, J. J., Nielsen, P., Sansone, F., Taghon, G., Van Raaphorst, W., Webster, I., Marcin, J., Wiberg, P., and Sundby, B. (2001). Permeable marine sediments: overturning an old paradigm. Eos, Transactions, American Geophysical Union 82, 133–136.

Brieva, D., Ribbe, J., and Lemckert, C. (2015). Is the East Australian Current causing a marine ecological hot-spot and important fisheries near Fraser Island, Australia? Estuarine, Coastal and Shelf Science 153, 121–134.
Is the East Australian Current causing a marine ecological hot-spot and important fisheries near Fraser Island, Australia?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvF2ksQ%3D%3D&md5=a5a1193fe76df01ef6e6ca467a99702cCAS |

Bryan, S. E., Cook, A., Allen, C. M., Siegel, C., Purdy, D., Greentree, J., and Uysal, T. (2012). Early–mid Cretaceous tectonic evolution of eastern Gondwana: from silicic LIP magmatism to continental rupture. Episodes 35, 142–152.

Burdige, D. J. (2005). Burial of terrestrial organic matter in marine sediments: a re-assessment. Global Biogeochemical Cycles 19, GB4011.
Burial of terrestrial organic matter in marine sediments: a re-assessment.Crossref | GoogleScholarGoogle Scholar |

Burdige, D. J. (2006). ‘Geochemistry of Marine Sediments.’ (Princeton University Press: Princeton, NJ, USA).

Burdige, D. J. (2007). Preservation of organic matter in marine sediments: Controls, mechanisms and an imbalance in sediment organic carbon budgets. Chemical Reviews 107, 467–485.
Preservation of organic matter in marine sediments: Controls, mechanisms and an imbalance in sediment organic carbon budgets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1WmtQ%3D%3D&md5=08efd1e1bc4e28a0a4453c37da191608CAS |

Burford, M. A., Rothlisberg, P., and Revill, A. T. (2009). Sources of nutrients driving production in the Gulf of Carpentaria, Australia: a shallow tropical shelf system. Marine and Freshwater Research 60, 1044–1053.
Sources of nutrients driving production in the Gulf of Carpentaria, Australia: a shallow tropical shelf system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymtLnI&md5=b71d00abbd06aaec8fb3361dd0d710d8CAS |

Carroll, A. G., Jorgensen, D. C., Siwabessy, P. J. W., Jones, L. E. A., Sexton, M. J., Tran, M., Nicholas, W. A., Radke, L. C., Carey, M. P., Howard, F. J. F., Stowar, M. J., Heyward, A. J., and Potter, A. and Shipboard Party (2012). Seabed environments and shallow geology of the Petrel Sub-Basin, northern Australia: SOL5463 (GA0335) – Post survey report. Geoscience Australia Record 2012/66, Geoscience Australia, Canberra, ACT, Australia.

Commonwealth of Australia (2002). ‘Tasmanian Seamounts Marine Reserve Management Plan.’ (Environment Australia: Canberra, ACT, Australia.)

Condie, S. A., and Dunn, J. R. (2006). Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography. Marine and Freshwater Research 57, 569–590.
Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVeksr8%3D&md5=819ffc304649e658ea2a0b039a04c8f5CAS |

Crawford, A. J., Meffre, S., and Symonds, P. A. (2003). 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Tasman Fold Belt System. Geological Society of Australia Special Publication 22, 377–397.

Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D. M., Aumont, O., Naqvi, S. W. A., and Maury, O. (2013). Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 10, 6677–6698.
Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVals78%3D&md5=1124c0eccec9e29effb3b67ca29c2a7aCAS |

Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party (2010). Frontier basins of the West Australian Continental Margin: Post-survey report of marine reconnaissance and geological sampling survey GA2476. Geoscience Australia Record 2009/38, Geoscience Australia, Canberra, ACT, Australia.

Danovaro, R., Della Croce, N., Eleftheriou, A., Fabiano, M., Papadopoulou, N., Smith, C., and Tselepides, A. (1995). Meiofauna of the deep Eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors. Progress in Oceanography 36, 329–341.
Meiofauna of the deep Eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors.Crossref | GoogleScholarGoogle Scholar |

Domingues, C. M., Maltrud, M. E., Wijffels, S. E., Church, J. A., and Tomczak, M. (2007). Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep-sea Research – II. Topical Studies in Oceanography 54, 797–817.
Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Drexel, J. P. (2007). Contribution of nitrogen fixation to planktonic food webs north of Australia. M.Sc. Thesis, Georgia Institute of Technology, Atlanta, GA, USA.

Durack, P. J., and Wijffels, S. E. (2010). Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. Journal of Climate 23, 4342–4362.
Fifty-year trends in global ocean salinities and their relationship to broad-scale warming.Crossref | GoogleScholarGoogle Scholar |

Dutkiewicz, A., Müller, R. D., O’Callaghan, S., and Jónasson, H. (2015). Census of seafloor sediments in the world’s ocean. Geology 43, 795.
Census of seafloor sediments in the world’s ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Omu7zJ&md5=973af6e50e462989c25660ab7b313984CAS |

Emery, K. O., and Uchupy, E. (1984). ‘The Geology of the Atlantic Ocean.’ (Springer-Verlag: New York, NY, USA.)

Everett, J. D., and Doblin, M. A. (2015). Characterising primary productivity measurements across a dynamic western boundary current region. Deep-sea Research – I. Oceanographic Research Papers 100, 105–116.
Characterising primary productivity measurements across a dynamic western boundary current region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksFWhs78%3D&md5=710b3c8cda377103619bc66a7b85fc0bCAS |

Falkowski, P. (2012). Ocean science: the power of phytoplankton. Nature 483, S17–S20.
Ocean science: the power of phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFygtrg%3D&md5=cfd8f90ecab183c5b074beb168fbe817CAS |

Feng, M., Waite, A. M., and Thompson, P. A. (2009). Climate variability and ocean production in the Leeuwin Current system off the west coast of Western Australia. Journal of the Royal Society of Western Australia 92, 67–81.

Ferguson, A. J. P., Eyre, B. D., and Gay, J. M. (2003). Organic matter and benthic metabolism in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia. Aquatic Microbial Ecology 33, 137–154.
Organic matter and benthic metabolism in euphotic sediments along shallow sub-tropical estuaries, northern New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240.
Primary production of the biosphere: integrating terrestrial and oceanic components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFKitb0%3D&md5=e69a1edb85a7d78208d3ef4cd3f6fac5CAS |

Folk, R. L. (1954). The distinction between grain size and mineral composition in sedimentary rock nomenclature. The Journal of Geology 62, 344–359.
The distinction between grain size and mineral composition in sedimentary rock nomenclature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXmslyjtw%3D%3D&md5=b1c5a645c4e9e4cc68a6e80c0cb4bf08CAS |

Forehead, H. I., and Thompson, P. A. (2010). Microbial communities of subtidal shallow sandy sediments change with depth and wave disturbance, but nutrient exchanges remain similar. Marine Ecology Progress Series 414, 11–26.
Microbial communities of subtidal shallow sandy sediments change with depth and wave disturbance, but nutrient exchanges remain similar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGms7fK&md5=65c3d59b6381344b9197e407092d0b05CAS |

Fry, B., and Wainright, S. C. (1991). Diatom sources of l3C-rich carbon in marine food webs. Marine Ecology Progress Series 76, 149–157.
Diatom sources of l3C-rich carbon in marine food webs.Crossref | GoogleScholarGoogle Scholar |

Furnas, M. J. (2007). Intra-seasonal and inter-annual variations in phytoplankton biomass, primary production and bacterial production at North West Cape, Western Australia: links to the 1997–1998 El Niño event. Continental Shelf Research 27, 958–980.
Intra-seasonal and inter-annual variations in phytoplankton biomass, primary production and bacterial production at North West Cape, Western Australia: links to the 1997–1998 El Niño event.Crossref | GoogleScholarGoogle Scholar |

Furnas, M. J., and Carpenter, E. J. (2016). Primary production in the tropical continental shelf seas bordering northern Australia. Continental Shelf Research 129, 33–48.
Primary production in the tropical continental shelf seas bordering northern Australia.Crossref | GoogleScholarGoogle Scholar |

Galbraith, E. D., Sigman, R. S., Robinson, R. S., and Pederson, T. (2008). Nitrogen in past marine environments. In ‘Nitrogen in the Marine Environment’, 2nd edn. (Eds D. G. Capone, D. Bronk, M. R. Mulholland and E. Carpenter.) pp. 1497–1535. (Academic Press: Burlington, MA, USA.)

Glud, R. N. (2008). Oxygen dynamics of marine sediments. Marine Biology Research 4, 243–289.
Oxygen dynamics of marine sediments.Crossref | GoogleScholarGoogle Scholar |

Gunn, P. J. (1988). Bonaparte Basin: evolution and structural framework. In ‘The North West Shelf, Australia, Proceedings of the Petroleum Exploration Society of Australia, Symposium 1988’. (Eds P. G. Purcell and R. R. Purcell.) pp. 275–285. (Petroleum Exploration Society of Australia: Perth, WA, Australia.)

Hanson, C. E., Pattiaratchi, C. B., and Waite, A. M. (2005). Seasonal productions regimes off south-western Australia: influence of the Capes and Leeuwin currents on phytoplankton dynamics. Marine and Freshwater Research 56, 1011–1026.
Seasonal productions regimes off south-western Australia: influence of the Capes and Leeuwin currents on phytoplankton dynamics.Crossref | GoogleScholarGoogle Scholar |

Hartnett, H. E., Keil, R. G., Hedges, J. I., and Devol, A. (1998). Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391, 572–575.
Influence of oxygen exposure time on organic carbon preservation in continental margin sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVSntrg%3D&md5=11ae4ed8de53a83a483178272a3bb564CAS |

Heap, A. D., and Harris, P. T. (2008). Geomorphology of the Australian margin and adjacent seafloor. Australian Journal of Earth Sciences 55, 555–585.
Geomorphology of the Australian margin and adjacent seafloor.Crossref | GoogleScholarGoogle Scholar |

Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party (2009). Seabed environments and subsurface geology of the Capel and Faust basins and Gifford Guyot, eastern Australia – post survey report. Geoscience Australia Record 2009/22, Geoscience Australia, Canberra, ACT, Australia.

Heap, A. D., Przeslawski, R., Radke, L., Trafford, J., and Battershill, C. and Shipboard Party (2010). Seabed environments of the eastern Joseph Bonaparte Gulf, northern Australia: SOL4934 post survey report. Geoscience Australia Record 2010/09, Geoscience Australia, Canberra, ACT, Australia.

Hedges, J., and Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81–115.
Sedimentary organic matter preservation: an assessment and speculative synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVyqsb4%3D&md5=7bc416316d2d86c9af888cdffa12d44eCAS |

Hedges, J. I., and Oades, J. M. (1997). Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry 27, 319–361.
Comparative organic geochemistries of soils and marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVWrsA%3D%3D&md5=29f4f6f48fc79711832564c3221e9a15CAS |

Henrichs, S. M. (1992). Early diagenesis of organic matter in marine sediments: progress and perplexity. Marine Chemistry 39, 119–149.
Early diagenesis of organic matter in marine sediments: progress and perplexity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtlOhtrc%3D&md5=d9dba10545ba258ec9a49197b7ecc731CAS |

Herman, P. M. J., Middelburg, J., Van de Koppel, J., and Heip, C. H. R. (1999). Ecology of estuarine macrobenthos. Advances in Ecological Research 29, 195–240.
Ecology of estuarine macrobenthos.Crossref | GoogleScholarGoogle Scholar |

Hobday, A. J., Okey, T. A., Poloczanska, E. S., Kunz, T. J., and Richardson, A. J. (2006). Impacts of climate change on Australian marine life: part A. Executive summary. Report to the Australian Greenhouse Office, Canberra, ACT, Australia.

Howard, F. J. F., Nicholson, C., Bernardel, G., Carroll, A. G., Grosjean, E., Hackney, R., Lech, M., Melrose, R., Nichol, S. L., Picard, K., Radke, L. C., Rollet, N., Romeyn, R., Siwabessy, P. J. W., and Trafford, J. (2016). A marine survey to investigate seal integrity between potential CO2 storage reservoirs and seafloor in the Caswell Sub-basin, Browse Basin, Western Australia: GA0345/GA0346/TAN1411 – post-survey report. Geoscience Australia Record 2016/05, Geoscience Australia, Canberra, ACT, Australia10.11636/RECORD.2016.005

Huang, Z., and Feng, M. (2015). Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data. Remote Sensing of Environment 166, 214–232.
Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data.Crossref | GoogleScholarGoogle Scholar |

Huang, Z., McArthur, M., Radke, L., Anderson, T., Nichol, S., Siwabessy, J., and Brooke, B. (2012). Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperature embayment. International Journal of Geographical Information Science 26, 2141–2160.
Developing physical surrogates for benthic biodiversity using co-located samples and regression tree models: a conceptual synthesis for a sandy temperature embayment.Crossref | GoogleScholarGoogle Scholar |

Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71.
Global iron connections between desert dust, ocean biogeochemistry, and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVaqs7w%3D&md5=cb565cf7deb908bfaa727b588dce6dcfCAS |

Keil, R. G., Tsamakis, E., Bor Fuh, C., Giddings, J. C., and Hedges, J. I. (1994). Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochimica et Cosmochimica Acta 58, 879–893.
Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs12ht70%3D&md5=6afc23aad2ca5edbd1e2d2475215bba9CAS |

Keil, R. G., Mayer, L. M., Quay, P. D., Richey, J. E., and Hedges, J. I. (1997). Loss of organic matter from riverine particles in deltas. Geochimica et Cosmochimica Acta 61, 1507–1511.
Loss of organic matter from riverine particles in deltas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVShtb8%3D&md5=7bd16f4448fa3ec373de2ae1fb440020CAS |

Kennedy, M. J., and Wagner, T. (2011). Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proceedings of the National Academy of Sciences of the United States of America 108, 9776–9781.
Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVOmsrY%3D&md5=fb24dd522941575e50a9f61d866420e9CAS |

Lalonde, K., Mucci, A., Ouellet, A., and Gélinas, Y. (2012). Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200.
Preservation of organic matter in sediments promoted by iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOqs7k%3D&md5=b498167ccf45674f33d63d4ce14b4891CAS |

Lee, Z. P., and Hu, C. (2006). Global distribution of Case-1 waters: an analysis from SeaWiFS measurements. Remote Sensing of Environment 101, 270–276.
Global distribution of Case-1 waters: an analysis from SeaWiFS measurements.Crossref | GoogleScholarGoogle Scholar |

Longhurst, A., Sathyendranath, S., and Platt, T. A. (1995). An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17, 1245–1271.
An estimate of global primary production in the ocean from satellite radiometer data.Crossref | GoogleScholarGoogle Scholar |

Lourey, M. J., Thompson, P. A., McLaughlin, M. J., Bonham, P., and Feng, M. (2013). Primary production and phytoplankton community structure during a winter shelf-scale phytoplankton bloom off Western Australia. Marine Biology 160, 355–369.
Primary production and phytoplankton community structure during a winter shelf-scale phytoplankton bloom off Western Australia.Crossref | GoogleScholarGoogle Scholar |

Lutz, M., Dunbar, R., and Caldeira, K. (2002). Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochemical Cycles 16, 1037.
Regional variability in the vertical flux of particulate organic carbon in the ocean interior.Crossref | GoogleScholarGoogle Scholar |

Mackie, D. S., Boyd, P. W., McTainsh, G. H., Tindale, N. W., Westberry, T. K., and Hunter, K. A. (2008). Biogeochemistry of iron in Australian dust: from eolian uplift to marine uptake. Geochemistry Geophysics Geosystems 9, –Q03Q08.
Biogeochemistry of iron in Australian dust: from eolian uplift to marine uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslSntb4%3D&md5=55288b5a0ca57070efe6758e5842953dCAS |

Mata, M. M., Tomczak, M., Wijffels, S., and Church, J. A. (2000). East Australian Current volume transports at 30°S: estimates from the World Ocean Circulation Experiment hydrographic sections PR11/P6 and the PCM3 current meter array. Journal of Geophysical Research 105, 28509–28526.
East Australian Current volume transports at 30°S: estimates from the World Ocean Circulation Experiment hydrographic sections PR11/P6 and the PCM3 current meter array.Crossref | GoogleScholarGoogle Scholar |

Matsushita, B., Yang, W., Chang, P., Yang, F., and Fukushima, T. (2012). A simple method for distinguishing global Case-1 and Case-2 waters using SeaWiFS measurements. ISPRS Journal of Photogrammetry and Remote Sensing 69, 74–87.
A simple method for distinguishing global Case-1 and Case-2 waters using SeaWiFS measurements.Crossref | GoogleScholarGoogle Scholar |

Mayer, L. M. (1994). Surface area control of organic carbon accumulation incontinetal shelf sediments. Geochimica et Cosmochimica Acta 58, 1271–1284.
Surface area control of organic carbon accumulation incontinetal shelf sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislGktbs%3D&md5=241caacdaf79eb59c3e856fb87035ab2CAS |

McArthur, M. A., Brooke, B. P., Przeslawski, R., Ryan, D. A., Lucieer, V. L., Nichol, S., McCallum, A. W., Mellin, C., Cresswell, I. D., and Radke, L. C. (2010). On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, Coastal and Shelf Science 88, 21–32.
On the use of abiotic surrogates to describe marine benthic biodiversity.Crossref | GoogleScholarGoogle Scholar |

McCallum, A. W., Poore, G. C. B., Williams, A., Althaus, F., and O’Hara, T. (2013). Environmental predictors of decapod species richness and turnover along an extensive Australian continental margin (13–35°S). Marine Ecology 34, 298–312.
Environmental predictors of decapod species richness and turnover along an extensive Australian continental margin (13–35°S).Crossref | GoogleScholarGoogle Scholar |

McCallum, A. W., Woolley, S., Błażewicz-Paszkowycz, M., Browne, J., Gerken, S., Kloser, R., Poore, G. C. B., Staples, D., Syme, A., Taylor, J., Walker-Smith, G., Williams, A., and Wilson, R. S. (2015). Productivity enhances benthic species richness along an oligotrophic Indian Ocean continental margin. Global Ecology and Biogeography 24, 462–471.
Productivity enhances benthic species richness along an oligotrophic Indian Ocean continental margin.Crossref | GoogleScholarGoogle Scholar |

McKinnon, A. D., Carleton, J. H., and Duggan, S. (2011). Determinants of pelagic metabolism in the Timor Sea during the inter-monsoon period. Marine and Freshwater Research 62, 130–140.
Determinants of pelagic metabolism in the Timor Sea during the inter-monsoon period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlejt7k%3D&md5=123c2558a586aecd660f7de6c6b77d6aCAS |

Meyers, P. A. (1997). Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes. Organic Geochemistry 27, 213–250.
Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVequg%3D%3D&md5=1bc17b9f507b1f656fe699cd46905625CAS |

Montoya, J. P. (2007). Natural abundance of N15 in marine planktonic ecosystems. In ‘Stable Isotopes in Ecology and Environmental Science’. (Eds R. Mitchener and K. Lajtha.) pp. 176–201. (Blackwell Publishers: Boston, MA, USA.)

Montoya, J. P., Carpenter, E. J., and Capone, D. G. (2002). Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic. Limnology and Oceanography 47, 1617–1628.
Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1Kqt7c%3D&md5=c2c19ef8a90f85d486e000549806ed65CAS |

Müller, G., and Gastner, M. (1971). The ‘Karonate-Bombe’ a simple device for the determination of the carbonate content in sediments, soils and other materials. Neues Jahrbuch für Mineralogie Monatshefte 10, 466–469.

Nichol, S. L., Heap, A. D., and Daniell, J. (2011). High resolution geomorphic map of a submerged marginal plateau, northern Lord Howe Rise, east Australian margin. Deep-sea Research – II. Topical Studies in Oceanography 58, 889–898.
High resolution geomorphic map of a submerged marginal plateau, northern Lord Howe Rise, east Australian margin.Crossref | GoogleScholarGoogle Scholar |

Nichol, S. L., Howard, F. J. F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T., and Heyward, A. (2013). Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 – post survey report. Geoscience Australia Record 2013/38, Geoscience Australia, Canberra, ACT, Australia.

Nicholas, W. A., Borissova, I., Radke, L., Tran, M., Bernardel, G., Jorgensen, D. M., Siwabessy, J., Carroll, A., and Whiteway, T. (2012). Seabed environments and shallow geology of the Vlaming Sub-Basin, Western Australia – marine data for the investigation of the geological storage of CO2. GA0334 post-survey report. Geoscience Australia Record 2013/09, Geoscience Australia, Canberra, ACT, Australia.

Nicholas, W. A., Nichol, S. L., Howard, F. J. F., Picard, K., Dulfer, H., Radke, L. C., Carroll, A. G., Tran, M., and Siwabessy, P. J. W. (2014). Pockmark development in the Petrel Sub-basin, Timor Sea, northern Australia: seabed habitat mapping in support of CO2 storage assessments. Continental Shelf Research 83, 129–142.
Pockmark development in the Petrel Sub-basin, Timor Sea, northern Australia: seabed habitat mapping in support of CO2 storage assessments.Crossref | GoogleScholarGoogle Scholar |

Nicholas, W. A., Carroll, A., Picard, K., Radke, L., Siwabessy, J., Howard, F. J. F., Dulfer, H., Tran, M., Consoli, C., Przeslawski, R., Li, J., and Jones, L. E. A. (2015). Seabed environments, shallow sub-surface geology and connectivity, Petrel Sub-basin, Bonaparte Basin, Timor Sea. Geoscience Australia Record 2015/24, Geoscience Australia, Canberra, ACT, Australia.

Nicholas, W. A., Carroll, A. G., Radke, L., Tran, M., Howard, F. J. F., Przeslawski, R., Chen, J., Siwabessy, P. J. W., and Nichol, S. L. (2016). Seabed environments and shallow geology of the Leveque Shelf, Browse Basin, Western Australia: GA0340 – interpretive report. Record 2016/18. Geoscience Australia, Canberra, ACT, Australia.

Niggemann, J., Ferdelman, T. G., Lomstein, B. A., Kallmeyer, J., and Schubert, C. J. (2007). How depositional conditions control input, composition and degradation or organic matter in sediments from the Chilean coastal upwelling region. Geochimica et Cosmochimica Acta 71, 1513–1527.
How depositional conditions control input, composition and degradation or organic matter in sediments from the Chilean coastal upwelling region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Gjs70%3D&md5=77427c1549e82c89e96397ac15f73e5dCAS |

O’Neil, J., and Roman, M. (1994). Ingestion of the cyanobacterium Trichodesmium spp. by pelagic harpacticoid copepods Macrosetella, Miracia and Oculosetella. Hydrobiologia 292, 235–240.
Ingestion of the cyanobacterium Trichodesmium spp. by pelagic harpacticoid copepods Macrosetella, Miracia and Oculosetella.Crossref | GoogleScholarGoogle Scholar |

O’Neil, J., Metzler, P., and Glibert, P. (1996). Ingestion of 15N2-labelled Trichodesmium spp. and ammonium regeneration by the harpacticoid copepod Macrosetella gracilis. Marine Biology 125, 89–96.
Ingestion of 15N2-labelled Trichodesmium spp. and ammonium regeneration by the harpacticoid copepod Macrosetella gracilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislKgs70%3D&md5=5ab6c243dee7829ffcd418aca4288522CAS |

O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C. (1998). Ocean color algorithms for SeaWiFS. Journal of Geophysical Research 103, 24937–24953.
Ocean color algorithms for SeaWiFS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVegsbg%3D&md5=e3f9a910e2e0ab43a68977e0d5542326CAS |

Orians, G. H., and Milewski, A. V. (2007). Ecology of Australia: the effect of nutrient-poor soils and intense fires. Biological Reviews of the Cambridge Philosophical Society 82, 393–423.
Ecology of Australia: the effect of nutrient-poor soils and intense fires.Crossref | GoogleScholarGoogle Scholar |

Pfannkuche, O., and Thiel, H. (1987). Meiobenthic stocks and benthic activity on the NE-Svalbard Shelf and in the Nansen Basin. Polar Biology 7, 253–266.
Meiobenthic stocks and benthic activity on the NE-Svalbard Shelf and in the Nansen Basin.Crossref | GoogleScholarGoogle Scholar |

Picard, K., Nichol, S. L., Hashimoto, R., Carroll, A. G., Bernardel, G., Jones, L. E. A., Siwabessy, P. J. W., Radke, L. C., Nicholas, W. A., Carey, M. C., Stowar, M., Howard, F. J. F., Tran, M., and Potter, A. (2014). Seabed environments and shallow geology of the Leveque Shelf, Browse Basin, Western Australia; GA0340/SOL5754 – Post-survey report. Geoscience Australia Record 2014/10, Geoscience Australia, Canberra, ACT, Australia.

Porter-Smith, R., Harris, P. T., Anderson, O. B., Coleman, R., Greenslade, D., and Jenkins, C. J. (2004). Classification of the Australian continental shelf based on predicted sediment threshold exceedance from tidal currents and swell waves. Marine Geology 211, 1–20.
Classification of the Australian continental shelf based on predicted sediment threshold exceedance from tidal currents and swell waves.Crossref | GoogleScholarGoogle Scholar |

Przeslawski, R., Dundas, K., Radke, L., and Anderson, T. J. (2012). Deep-sea Lebensspuren of the Australian continental margins. Deep-sea Research – I. Oceanographic Research Papers 65, 26–35.
Deep-sea Lebensspuren of the Australian continental margins.Crossref | GoogleScholarGoogle Scholar |

Radke, L. C., Huang, Z., Przeslawski, R., Webster, I. T., McArthur, M. A., Anderson, T. J., Siwabessy, P. J., and Brooke, B. (2011a). Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment. Marine and Freshwater Research 62, 1432–1448.
Including biogeochemical factors and a temporal component in benthic habitat maps: influences on infaunal diversity in a temperate embayment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCit7jM&md5=7b96927a77f860b105c6ae08f7907944CAS |

Radke, L. C., Heap, A. D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. (2011b). A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep-sea Research – II. Topical Studies in Oceanography 58, 909–921.
A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFeju7s%3D&md5=0a82f17a0a2e976fd1015fcb37353e27CAS |

Radke, L. C., Li, J., Douglas, G., Przeslawski, R., Nicholl, S., Siwabessy, J., Huang, Z., Trafford, J., Watson, T., and Whiteway, T. (2015). Characterising sediments for a tropical sediment-starved shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry 12, 204–226.
Characterising sediments for a tropical sediment-starved shelf using cluster analysis of physical and geochemical variables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVWnu7o%3D&md5=c7daac94c17e407490844d7c14257f97CAS |

Raes, E. J., Waite, A. W., McInnes, A. S., Olsen, H., Nguyen, H. M., Hardman-Mountford, N., and Thompson, P. A. (2014). Changes in latitude and dominant diazotrophic community alter N2 fixation. Marine Ecology Progress Series 516, 85–102.
Changes in latitude and dominant diazotrophic community alter N2 fixation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFaqtLk%3D&md5=ed4f11344a154cc503c98a9740852a11CAS |

Raes, E. J., Thompson, P. A., McInnes, A. S., Nguyen, H. M., Hardman‐Mountford, N., and Waite, A. M. (2015). Sources of new nitrogen in the Indian Ocean. Global Biogeochemical Cycles 29, 1283–1297.
Sources of new nitrogen in the Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVarurfL&md5=76dcdfa766b44adfc39c6362a711e608CAS |

Ransom, B., Bennet, R. H., Baerwald, R., and Shea, K. (1997). TEM study of in situ organic matter on continental margins: occurrence and the monolayer hypothesis. Marine Geology 138, 1–9.
TEM study of in situ organic matter on continental margins: occurrence and the monolayer hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlCnsbk%3D&md5=df9758c4aad7e5e424a2a1cdef99f591CAS |

Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist 46, 205–221.
| 1:CAS:528:DyaG1cXhtVCmtLg%3D&md5=b1b450b9f1de0c9e58bbc841a985a63bCAS |

Richier, S., Macey, A. I., Pratt, N. J., Honey, D. J., Moore, M., and Bibby, T. S. (2012). Abundances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic. PLoS One 7, e35571.
Abundances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVeks7g%3D&md5=51404ec8ddbab5d12e6c9a6dcd2eebefCAS |

Ridgway, K., and Dunn, J. (2003). Mesoscale structure of the mean East Australian Current System and its relationship with topography. Progress in Oceanography 56, 189–222.
Mesoscale structure of the mean East Australian Current System and its relationship with topography.Crossref | GoogleScholarGoogle Scholar |

Robinson, R., Kienest, M., Albuquerque, A. L., Altabet, M., Contreras, S., De Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T.-C., Ivanochko, T., Jaccard, S., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann, M., Martinez, P., McCarthy, M., Möbius, J., Pederson, T., Quan, T. M., Ryabenko, M., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R., and Yang, J.-Y. (2012). A review of nitrogen isotope alteration in marine sediments. Paleoceanography 27, 1–13.
A review of nitrogen isotope alteration in marine sediments.Crossref | GoogleScholarGoogle Scholar |

Rollet, N., Logan, G. A., Kennard, J. M., O’Brien, P., Jones, A., and Sexton, M. (2006). Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: an example from the tropical, carbonate Yampi Shelf, Northwest Australia. Marine and Petroleum Geology 23, 145–164.
Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: an example from the tropical, carbonate Yampi Shelf, Northwest Australia.Crossref | GoogleScholarGoogle Scholar |

Rossi, V., Feng, M., Pattiaratchi, C., Roughan, M., and Waite, A. M. (2013a). On the factors influencing the development of sporadic upwelling in the Leeuwin Current system. Journal of Geophysical Research – Oceans 118, 3608–3621.
On the factors influencing the development of sporadic upwelling in the Leeuwin Current system.Crossref | GoogleScholarGoogle Scholar |

Rossi, V., Feng, M., Pattiaratchi, C., Roughan, M., and Waite, A. M. (2013b). Linking synoptic forcing and local mesoscale processes with biological dynamics off Ningaloo Reef. Journal of Geophysical Research – Oceans 118, 1211–1225.
Linking synoptic forcing and local mesoscale processes with biological dynamics off Ningaloo Reef.Crossref | GoogleScholarGoogle Scholar |

Rossi, V., Schaeffer, A., Wood, J., Galibert, G., Morris, B., Sudre, J., Roughan, M., and Waite, A. M. (2014). Seasonality of sporadic physical processes driving temperature and nutrient high-frequency variability in the coastal ocean off southeast Australia. Journal of Geophysical Research – Oceans 119, 445–460.
Seasonality of sporadic physical processes driving temperature and nutrient high-frequency variability in the coastal ocean off southeast Australia.Crossref | GoogleScholarGoogle Scholar |

Rothlisberg, P., Pollard, P., Nichols, P., Moriarty, D., Forbes, A., Jackson, C., and Vaudrey, D. (1994). Phytoplankton community structure and productivity in relation to the hydrological regime of the Gulf of Carpentaria, Australia, in summer. Marine and Freshwater Research 45, 265–282.
Phytoplankton community structure and productivity in relation to the hydrological regime of the Gulf of Carpentaria, Australia, in summer.Crossref | GoogleScholarGoogle Scholar |

Rousseaux, C. S. G., Lowe, R., Feng, M., Waite, A. M., and Thompson, P. A. (2012). The role of the Leeuwin Current and mixed layer depth on the autumn phytoplankton bloom off Ningaloo Reef, Western Australia. Continental Shelf Research 32, 22–35.
The role of the Leeuwin Current and mixed layer depth on the autumn phytoplankton bloom off Ningaloo Reef, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Rubin, M., Berman-Frank, I., and Shaked, Y. (2011). Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nature Geoscience 4, 529–534.
Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFWlu70%3D&md5=90bc70c776449b8ab43be9def3d3e24aCAS |

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science 305, 367–371.
The oceanic sink for anthropogenic CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsbc%3D&md5=18a42b95b4381f49452497386c6e9074CAS |

Schubert, C. J., and Calvert, S. E. (2001). Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilisation and organic matter composition. Deep-sea Research. – I. Oceanographic Research Papers 48, 789–810.
Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilisation and organic matter composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptVWqsbk%3D&md5=306ca2b0cd1aacfb3132101a9cab0473CAS |

Schubert, C. J., Niggemann, J., Klockgether, G., and Ferdelman, G. (2005). Chlorin Index: a new parameter for organic matter freshness in sediment. Geochemistry Geophysics Geosystems 6, Q03005.
Chlorin Index: a new parameter for organic matter freshness in sediment.Crossref | GoogleScholarGoogle Scholar |

Seiter, K., Hensen, C., Schroter, J., and Zabel, M. (2004). Organic carbon content in surface sediments – defining regional provinces. Deep-sea Research – I. Oceanographic Research Papers 51, 2001–2026.
Organic carbon content in surface sediments – defining regional provinces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgtLzN&md5=015f30c1de14c2106155d412aad7c2d3CAS |

Seiter, K., Hensen, C., and Zabel, M. (2005). Benthic carbon mineralisation on a global scale. Global Biogeochemical Cycles 19, 1–26.
Benthic carbon mineralisation on a global scale.Crossref | GoogleScholarGoogle Scholar |

Seitzinger, S. P., and Harrison, J. A. (2005). Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of global nutrient export from watershed (NEWS) models and their application. Global Biogeochemical Cycles 19, GB4S01.
Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of global nutrient export from watershed (NEWS) models and their application.Crossref | GoogleScholarGoogle Scholar |

Sigman, D. M., Altabet, M. A., Michener, R., McCorkle, D. C., Fry, B., and Holmes, R. M. (1997). Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry 57, 227–242.
Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks12mtro%3D&md5=ec7518d3bf16951dd972b0ac98e201f0CAS |

Snelgrove, P. V. R., and Butman, C. A. (1994). Animal sediment relationships revisited: cause versus effect. Oceanography and Marine Biology – an Annual Review 32, 111–177.

Snelgrove, P. V. R., Grassle, J. F., and Petrecca, R. F. (1992). The role of food patches in maintaining high deep-sea diversity: field experiments with hydrodynamically unbiased colonization trays. Limnology and Oceanography 37, 1543–1550.
The role of food patches in maintaining high deep-sea diversity: field experiments with hydrodynamically unbiased colonization trays.Crossref | GoogleScholarGoogle Scholar |

Snelgrove, P. V. R., Grassle, J. F., and Petrecca, R. F. (1996). Experimental evidence for aging food patches as a factor contributing to high deep-sea macrofaunal diversity. Limnology and Oceanography 41, 605–614.
Experimental evidence for aging food patches as a factor contributing to high deep-sea macrofaunal diversity.Crossref | GoogleScholarGoogle Scholar |

Stephens, M. P., Kadko, D. C., Smith, C. R., and Latasa, M. (1997). Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor. Geochimica et Cosmochimica Acta 61, 4605–4619.
Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsl2m&md5=511fc943420b095d8835a9f6eea4f9c2CAS |

Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C. (2010). Ocean oxygen minima expansions and their biological impacts. Deep-sea Research – I. Oceanographic Research Papers 57, 587–595.
Ocean oxygen minima expansions and their biological impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2isrg%3D&md5=b3023a46aeb89d9d5b752aede562e7baCAS |

Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Rottgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., and Claustre, H. (2008). Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5, 171–201.
Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2iurbN&md5=2c499fbf461efff1a9b6f81514baa90dCAS |

Sundquist, E. T. (1985) Geological perspectives on carbon dioxide and the carbon cycle. In ‘The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present’. (Eds E. T. Sundquist and W. S. Broecker.) pp. 5–59. (American Geophysical Union: Washington, DC, USA.)10.1029/GM032P0005

Symonds, P., Alcock, M., and French, C. (2009). Setting Australia’s limits: understanding Australia’s marine jurisdiction. AUSGEO News 93, 1–8.

Tesdal, J.-E., Galbraith, E. D., and Kienest, M. (2013). Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences 10, 101–118.
Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records.Crossref | GoogleScholarGoogle Scholar |

Thompson, P. A., Pesant, S. A., and Waite, A. M. (2007). Contrasting the vertical differences in the phytoplankton biology of a warm core versus cold core eddy in the south-eastern Indian Ocean. Deep-sea Research – II. Topical Studies in Oceanography 54, 1003–1028.
Contrasting the vertical differences in the phytoplankton biology of a warm core versus cold core eddy in the south-eastern Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Thompson, P., Baird, M., Ingleton, T., and Doblin, M. (2009). Long-term changes in temperate Australian coastal waters: implications for phytoplankton. Marine Ecology Progress Series 394, 1–19.
Long-term changes in temperate Australian coastal waters: implications for phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOmtA%3D%3D&md5=47b1ffa17494f69bc28e2ba6952e8305CAS |

Thompson, P. A., Bonham, P., Waite, A. M., Clementson, L. A., Cherukuru, N., and Doblin, M. A. (2011a). Contrasting oceanographic conditions and phytoplankton communities on the east and west coasts of Australia. Deep-sea Research – II. Topical Studies in Oceanography 58, 645–663.
Contrasting oceanographic conditions and phytoplankton communities on the east and west coasts of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1aqsbo%3D&md5=b9dc33f4f4e213174dcb625a76f21c73CAS |

Thompson, P. A., Wild-Allen, K., Lourey, M., Rousseaux, C., Waite, A. M., Feng, M., and Beckley, L. E. (2011b). Nutrients in an oligotrophic boundary current: evidence of a new role for the Leeuwin Current. Progress in Oceanography 91, 345–359.
Nutrients in an oligotrophic boundary current: evidence of a new role for the Leeuwin Current.Crossref | GoogleScholarGoogle Scholar |

Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Vanden Berghe, E., and Worm, E. B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101.
Global patterns and predictors of marine biodiversity across taxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptl2rsrY%3D&md5=9a0188ec4a154c63ba7df413a834bfd1CAS |

Tselepides, A., Polychronaki, T., Marrale, D., Akoumianaki, I., Dell’Anno, A., Pusceddu, A., and Danavaro, R. (2000). Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean). Progress in Oceanography 46, 311–344.
Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Van Andel, T. H., and Veevers, J. J. (1967). Morphology and sediments of the Timor Sea. Bureau of Mineral Resources, Geology and Geophysics Bulletin 83, Canberra, ACT, Australia.

Voss, M., Dippner, J. W., and Montoya, J. P. (2001). Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean. Deep-sea Research – I. Oceanographic Research Papers 48, 1905–1921.
Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslSmsLs%3D&md5=9bda8a2f509fd921ac8a07bc760379e1CAS |

Waite, A. M., Pesant, S., Griffin, D. A., Thompson, P. A., and Holl, C. M. (2007a). Oceanography, primary production and dissolved inorganic nitrogen uptake in two Leeuwin Current eddies. Deep-sea Research – II. Topical Studies in Oceanography 54, 981–1002.
Oceanography, primary production and dissolved inorganic nitrogen uptake in two Leeuwin Current eddies.Crossref | GoogleScholarGoogle Scholar |

Waite, A. M., Muhling, B. A., Holl, C. M., Beckley, L. E., Montoya, J. P., Strzelecki, J., Thompson, P. A., and Pesant, S. (2007b). Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analysis. Deep-sea Research – II. Topical Studies in Oceanography 54, 1055–1075.
Food web structure in two counter-rotating eddies based on δ15N and δ13C isotopic analysis.Crossref | GoogleScholarGoogle Scholar |

Waite, A. M., Rossi, V., Roughan, M., Tilbrook, B., Thompson, P. A., Feng, M., Wyatt, A. S. J., and Raes, E. J. (2013). Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation. Biogeosciences 10, 5691–5702.
Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation.Crossref | GoogleScholarGoogle Scholar |

Wijffels, S., Sprintall, J., Fieux, M., and Bray, N. (2002). The JADE and WOCE I10/IR6 throughflow sections in the southeast Indian Ocean. Part 1: water mass distribution and variability. Deep-sea Research – II. Topical Studies in Oceanography 49, 1341–1362.
The JADE and WOCE I10/IR6 throughflow sections in the southeast Indian Ocean. Part 1: water mass distribution and variability.Crossref | GoogleScholarGoogle Scholar |

Willcox, J. B., Symonds, P. A., Hinz, K., and Bennett, D. (1980). Lord Howe Rise, Tasman Sea – preliminary geophysical results and petroleum prospects. BMR Journal of Australian Geology and Geophysics 5, 225–226.

Wollast, R. (1991). The coastal organic carbon cycle: fluxes, sources, and sinks. In ‘Ocean Margin Processes in Global Change’. (Eds M. J. M. Mantoura and R. F. C. Wollast.) pp. 365–382. (Wiley: Chichester, UK.)

Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P., and Fifield, K. (2000). Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716.
Timing of the Last Glacial Maximum from observed sea-level minima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1CgsLs%3D&md5=7a3ec91cc8450c1a74d27ebcb2c51ebfCAS |

Yokoyama, Y., De Deckker, P., Lambeck, K., Johnston, P., and Fifield, L. K. (2001). Sea-level at the Last Glacial Maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 281–297.
Sea-level at the Last Glacial Maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2.Crossref | GoogleScholarGoogle Scholar |