Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Differentiating the roles of shrimp and aquatic insects in leaf processing in a Neotropical stream

Claudia M. Andrade A B , Vinicius Neres-Lima C and Timothy P. Moulton C D
+ Author Affiliations
- Author Affiliations

A Programa de Pós-graduação em Ecologia e Evolução, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro, RJ 20550-013, Brazil.

B Present address: Laboratório de Limnologia, Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Edifício CCS, Bloco A, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil.

C Departamento de Ecologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro, RJ 20550-013, Brazil.

D Corresponding author. Email: moulton.timothy@gmail.com

Marine and Freshwater Research 68(9) 1695-1703 https://doi.org/10.1071/MF16206
Submitted: 5 June 2016  Accepted: 17 November 2016   Published: 23 January 2017

Abstract

There is interest in the relationships between macroconsumers (e.g. shrimp) and aquatic insects, as well as their role in ecological processes, including leaf breakdown, in tropical freshwater environments. Many studies have shown that shrimp have the capacity to reduce the abundance of aquatic insects (by predation and behavioural inhibition) and promote leaf breakdown as shredders. To discriminate between these effects, we used fresh leaves of Erythroxylum pulchrum and manipulated the presence of shrimp and insects by electric exclusion at high and low intensities of electric field. In the control treatment (no electric exclusion) shrimp (the brushing collector Potimirim brasiliana and the shredding omnivore Macrobrachium olfersii) and aquatic insects (including shredders) were present. The low-intensity electric field excluded only shrimp, whereas the high-intensity electric field excluded both shrimp and medium- and large-sized aquatic insects (>2 mm). Leaf processing was approximately twice as fast in the absence of shrimp and in the presence of insects than when both or neither were present. This implied a trophic cascade of shrimp acting as potential predators of insect shredders, but not acting as shredders themselves. We postulate that increased leaf processing was caused by a behavioural response of the putative shredders to the absence of shrimp; abundant leptophlebiid ephemeropterans were the most likely shredders.

Additional keywords: electric exclusion, leaf decomposition, Leptophlebiidae, Macrobrachium, trophic cascade, tropical stream.


References

Baptista, D. F., Buss, D. F., and Dias, L. G. (2006). Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts. Annales de Limnologie 42, 87–96.
Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts.Crossref | GoogleScholarGoogle Scholar |

Bello, C. C. L., and Cabrera, F. M. I. (2001). Alimentación ninfal de Leptophlebiidae (Insecta: Ephemeroptera) en el Caño Paso del Diablo, Venezuela. Revista de Biologia Tropical 49, 999–1003.
| 1:STN:280:DC%2BD38vjtlejsg%3D%3D&md5=980326336cb5e4218e3b11db130d3fe0CAS |

Benfield, E. F. (2007) Decomposition of leaf material. In ‘Methods in Stream Ecology’, 2nd edn. (Eds F. R. Hauer and G. A. Lamberti.) pp. 711–720. (Elsevier: San Diego, CA, USA.)

Boyero, L., Pearson, R., Dudgeon, D., Graca, M., Gessner, M., Albariño, R., Ferreira, V., Yule, C., Boulton, A., Arunachalam, M., Callisto, M., Chauvet, E., Ramirez, A., Chara, J., Moretti, M., Goncalves, J., Helson, J., Chara, A. M., Encalada, A., Davies, J., Lamothe, S., Cornejo, A., Castela, J., Li, A., Buria, L., Díaz Villanueva, V., Zúñiga, M. C., and Pringle, C. (2011). Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92, 1839–1848.
Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns.Crossref | GoogleScholarGoogle Scholar |

Boyero, L., Rincón, P. A., and Bosch, J. (2012). Contrasting behavioural responses of grazing mayflies and detritivorous caddisflies to predatory fish. Marine and Freshwater Research 63, 9–16.
Contrasting behavioural responses of grazing mayflies and detritivorous caddisflies to predatory fish.Crossref | GoogleScholarGoogle Scholar |

Boyero, L., Pearson, R. G., Gessner, M. O., Dudgeon, D., Ramírez, A., Yule, C. M., Callisto, M., Pringle, C. M., Encalada, A. C., Arunachalam, M., Mathooko, J., Helson, J. E., Rincón, J., Bruder, A., Cornejo, A., Flecker, A. S., Mathuriau, C., M’Erimba, C., Gonçalves, J. F., Moretti, M., and Jinggut, T. (2015). Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Science 34, 759–769.
Leaf-litter breakdown in tropical streams: is variability the norm?Crossref | GoogleScholarGoogle Scholar |

Brito, E. F., Moulton, T. P., Souza, M. L., and Bunn, S. E. (2006). Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecology 31, 623–633.
Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil.Crossref | GoogleScholarGoogle Scholar |

Brown, G. C., Norris, R. H., Maher, W. A., and Thomas, K. (2000). Use of electricity to inhibit macroivertebrate grazing of epilithon in experimental treatments in flowing waters. Journal of the North American Benthological Society 19, 176–185.
Use of electricity to inhibit macroivertebrate grazing of epilithon in experimental treatments in flowing waters.Crossref | GoogleScholarGoogle Scholar |

Casotti, C. G., Kiffer, W. P., and Moretti, M. S. (2014). Leaf traits induce the feeding preference of a shredder of the genus Triplectides Kolenati, 1859 (Trichoptera) in an Atlantic Forest stream, Brazil: a test with native and exotic leaves. Aquatic Insects 36, 43–52.
Leaf traits induce the feeding preference of a shredder of the genus Triplectides Kolenati, 1859 (Trichoptera) in an Atlantic Forest stream, Brazil: a test with native and exotic leaves.Crossref | GoogleScholarGoogle Scholar |

Cheshire, K., Boyero, L., and Pearson, R. G. (2005). Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50, 748–769.
Food webs in tropical Australian streams: shredders are not scarce.Crossref | GoogleScholarGoogle Scholar |

Cogo, G. B., and Santos, S. B. (2013). The role of aeglids in shredding organic matter in neotropical streams. Journal of Crustacean Biology 33, 519–526.
The role of aeglids in shredding organic matter in neotropical streams.Crossref | GoogleScholarGoogle Scholar |

Crowl, T. A., McDowell, W. H., Covich, A. P., and Johnson, S. L. (2001). Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82, 775–783.
Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream.Crossref | GoogleScholarGoogle Scholar |

de Albuquerque, C. H., Tavares, J. F., de Oliveira, S. L., Silva, T. S., Gonçalves, G. F., Costa, V. C. de O., Agra, M. de F., Pessôa, H. de L.F., and de Silva, M. S. (2014). Flavonoides glicosilados de Erythroxylum pulchrum A. St.-Hil. (Erythroxylaceae). Quimica Nova 37, 663–666.
Flavonoides glicosilados de Erythroxylum pulchrum A. St.-Hil. (Erythroxylaceae).Crossref | GoogleScholarGoogle Scholar |

Dobson, M., Magana, A., Mathooko, J. M., and Ndegwa, F. K. (2002). Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47, 909–919.
Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics?Crossref | GoogleScholarGoogle Scholar |

Encalada, A. C., Calles, J., Ferreira, V., Canhoto, C. M., and Graça, M. A. S. (2010). Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55, 1719–1733.

Gessner, M. O., Chauvet, E., and Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos 85, 377–384.
A perspective on leaf litter breakdown in streams.Crossref | GoogleScholarGoogle Scholar |

Gonçalves, J. F., Graca, M. A. S., and Callisto, M. (2006). Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society 25, 344–355.
Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates.Crossref | GoogleScholarGoogle Scholar |

Graça, M. A. S., Ferreira, V., Canhoto, C., Encalada, A. C., Guerrero-Bolaño, F., Wantzen, K. M., and Boyero, L. (2015). A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100, 1–12.
A conceptual model of litter breakdown in low order streams.Crossref | GoogleScholarGoogle Scholar |

Konishi, M., Nakano, S., and Iwata, T. (2001). Trophic cascading effects of predatory fish on leaf litter processing in a Japanese stream. Ecological Research 16, 415–422.
Trophic cascading effects of predatory fish on leaf litter processing in a Japanese stream.Crossref | GoogleScholarGoogle Scholar |

Landeiro, V. L., Hamada, N., and Melo, A. S. (2008). Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian ‘terra firme’ streams. Fundamental and Applied Limnology 172, 49–58.
Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian ‘terra firme’ streams.Crossref | GoogleScholarGoogle Scholar |

Landeiro, V., Hamada, N., Godoy, B., and Melo, A. (2010). Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia 649, 355–363.
Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams.Crossref | GoogleScholarGoogle Scholar |

Loiola, M. I. B., Agra, M. F., Baracho, G. S., and Queiroz, R. T. (2007). Flora da Paraíba, Brasil: Erythroxylaceae Kunth. Acta Botanica Brasílica 21, 473–487.
Flora da Paraíba, Brasil: Erythroxylaceae Kunth.Crossref | GoogleScholarGoogle Scholar |

Longo, M., and Blanco, J. F. (2014). Shredders are abundant and species-rich in tropical continental-island low-order streams: Gorgona Island, Tropical Eastern Pacific, Colombia. Revista de Biología Tropical 62, 85–105.
Shredders are abundant and species-rich in tropical continental-island low-order streams: Gorgona Island, Tropical Eastern Pacific, Colombia.Crossref | GoogleScholarGoogle Scholar |

Lourenço-Amorim, C., Neres-Lima, V., Moulton, T. P., Sasada-Sato, C. Y., Oliveira-Cunha, P., and Zandonà, E. (2014). Control of periphyton standing crop in an Atlantic Forest stream: the relative roles of nutrients, grazers and predators. Freshwater Biology 59, 2365–2373.
Control of periphyton standing crop in an Atlantic Forest stream: the relative roles of nutrients, grazers and predators.Crossref | GoogleScholarGoogle Scholar |

Malmqvist, B. (1993). Interactions in stream leaf packs: effects of a stonefly predator on detritivores and organic matter processing. Oikos 66, 454–462.
Interactions in stream leaf packs: effects of a stonefly predator on detritivores and organic matter processing.Crossref | GoogleScholarGoogle Scholar |

Mancinelli, G., and Mulder, C. (2015) Detrital dynamics and cascading effects on supporting ecosystem services. In ‘Advances in Ecological Research’. (Eds G. Woodward and D. A. Bohan.) pp. 97–160. (Academic Press) https://doi.org/10.1016/BS.AECR.2015.10.001

Mancinelli, G., Costantini, M., and Rossi, L. (2002). Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy). Oecologia 133, 402–411.
Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy).Crossref | GoogleScholarGoogle Scholar |

Mancinelli, G., Sangiorgio, F., and Scalzo, A. (2013). The effects of decapod crustacean macroconsumers on leaf detritus processing and colonization by invertebrates in stream habitats: a meta-analysis. International Review of Hydrobiology 98, 206–216.
The effects of decapod crustacean macroconsumers on leaf detritus processing and colonization by invertebrates in stream habitats: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

March, J. G., Benstead, J. P., Pringle, C. M., and Ruebel, M. W. (2001). Linking shrimp assemblages with rates of detrital processing along an elevational gradient in a tropical stream. Canadian Journal of Fisheries and Aquatic Sciences 58, 470–478.
Linking shrimp assemblages with rates of detrital processing along an elevational gradient in a tropical stream.Crossref | GoogleScholarGoogle Scholar |

Masese, F. O., Kitaka, N., Kipkemboi, J., Gettel, G. M., Irvine, K., and McClain, M. E. (2014). Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. Freshwater Science 33, 435–450.
Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild.Crossref | GoogleScholarGoogle Scholar |

Merritt, R. W., Cummins, K. W., and Berg, M. (2008) ‘An Introduction to the Aquatic Insects of North America’, 4th edn. (Kendall/Hunt: Duque, IA, USA.)

Moulton, T. P., and Magalhaes, S. A. (2003). Responses of leaf processing to impacts in streams in Atlantic rain forest, Rio de Janeiro, Brazil – a test of the biodiversity-ecosystem functioning relationship? Brazilian Journal of Biology 63, 87–95.
Responses of leaf processing to impacts in streams in Atlantic rain forest, Rio de Janeiro, Brazil – a test of the biodiversity-ecosystem functioning relationship?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3sznvVyhtg%3D%3D&md5=232b9121b22527fdc6c8e3480d0735aaCAS |

Moulton, T. P., Souza, M. L., Silveira, R. M. L., and Krsulovic, F. A. M. (2004). Effects of ephemeropterans and shrimps on periphyton and sediments in a coastal stream (Atlantic forest, Rio de Janeiro, Brazil). Journal of the North American Benthological Society 23, 868–881.
Effects of ephemeropterans and shrimps on periphyton and sediments in a coastal stream (Atlantic forest, Rio de Janeiro, Brazil).Crossref | GoogleScholarGoogle Scholar |

Moulton, T. P., Magalhães-Fraga, S., Brito, E., and Barbosa, F. (2010). Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro, Brazil. Hydrobiologia 638, 55–66.
Macroconsumers are more important than specialist macroinvertebrate shredders in leaf processing in urban forest streams of Rio de Janeiro, Brazil.Crossref | GoogleScholarGoogle Scholar |

Moulton, T. P., Souza, M. L., Brito, E. F., Braga, M. R. A., and Bunn, S. E. (2012). Strong interactions of Paratya australiensis (Decapoda: Atyidae) on periphyton in an Australian subtropical stream. Marine and Freshwater Research 63, 834–844.
Strong interactions of Paratya australiensis (Decapoda: Atyidae) on periphyton in an Australian subtropical stream.Crossref | GoogleScholarGoogle Scholar |

Moulton, T. P., Lourenço-Amorim, C., Sasada-Sato, C. Y., Neres-Lima, V., and Zandonà, E. (2015). Dynamics of algal production and ephemeropteran grazing of periphyton in a tropical stream. International Review of Hydrobiology 99, 1–8.

Mugnai, R., Nessimian, J. L., and Baptista, D. F. (2010) ‘Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro.’ (Technical Books Editora: Rio de Janeiro, Brazil.)

Neres-Lima, V., Brito, E. F., Krsulović, F. A. M., Detweiler, A. M., Hershey, A. E., and Moulton, T. P. (2016). High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. International Review of Hydrobiology 101, 132–142.
High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading.Crossref | GoogleScholarGoogle Scholar |

Obernborfer, R. Y., McArthur, J. V., Barnes, J. R., and Dixon, J. (1984). The effect of invertebrate predators on leaf litter processing in an alpine stream. Ecology 65, 1325–1331.
The effect of invertebrate predators on leaf litter processing in an alpine stream.Crossref | GoogleScholarGoogle Scholar |

Oliveira, A. L. H., and Nessimian, J. L. (2010). Spatial distribution and functional feeding groups of aquatic insect communities in Serra da Bocaina streams, southeastern Brazil. Acta Limnologica Brasiliensia 22, 424–441.
Spatial distribution and functional feeding groups of aquatic insect communities in Serra da Bocaina streams, southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Oliveira, L. G., Bispo, P. C., Crisci, V. L., and Sousa, K. G. (1999). Distribuições de categorias funcionais alimentares de larvas de Trichoptera em córregos de uma região serrana do Brasil Central. Acta Limnologica Brasiliensia 11, 173–183.

Peckarsky, B. L., Cowan, C. A., and Anderson, C. R. (1994). Consequences and plasticity of the specialized predatory behavior of stream-dwelling stonefly larvae. Ecology 75, 166–181.
Consequences and plasticity of the specialized predatory behavior of stream-dwelling stonefly larvae.Crossref | GoogleScholarGoogle Scholar |

Petersen, R. C., and Cummins, K. W. (1974). Leaf processing in a woodland stream. Freshwater Biology 4, 343–368.
Leaf processing in a woodland stream.Crossref | GoogleScholarGoogle Scholar |

Polegatto, C. M., and Froehlich, C. G. (2003) Feeding strategies in Atalophlebiinae (Ephemeroptera: Leptophlebiidae), with considerations on scraping and filtering. In ‘Research Update on Ephemeroptera and Plecoptera’. (Ed. E Gaino.) pp. 55–61. (Università di Perugia: Perugia, Italy.)

Pringle, C. M., and Blake, G. A. (1994). Quantitative effects of atyid shrimp (Decapoda: Atyidae) on the depositional environment in a tropical stream: use of electricity for experimental exclusion. Canadian Journal of Fisheries and Aquatic Sciences 51, 1443–1450.
Quantitative effects of atyid shrimp (Decapoda: Atyidae) on the depositional environment in a tropical stream: use of electricity for experimental exclusion.Crossref | GoogleScholarGoogle Scholar |

Pringle, C. M., and Hamazaki, T. (1998). The role of omnivory in a Neotropical stream: separating diurnal and nocturnal effects. Ecology 79, 269–280.
The role of omnivory in a Neotropical stream: separating diurnal and nocturnal effects.Crossref | GoogleScholarGoogle Scholar |

Ramírez, A., and Gutiérrez-Fonseca, P. E. (2014). Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biologia Tropical 62, 155–167.
Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature.Crossref | GoogleScholarGoogle Scholar |

Reice, S. R. (1991). Effects of detritus loading and fish predation on leafpack breakdown and benthic macroinvertebrates in a woodland stream. Journal of the North American Benthological Society 10, 42–56.
Effects of detritus loading and fish predation on leafpack breakdown and benthic macroinvertebrates in a woodland stream.Crossref | GoogleScholarGoogle Scholar |

Rosemond, A. D., Pringle, C. M., and Ramírez, A. (1998). Macroconsumer effects on insect detritivores and detritus processing in a tropical stream food web. Freshwater Biology 39, 515–523.
Macroconsumer effects on insect detritivores and detritus processing in a tropical stream food web.Crossref | GoogleScholarGoogle Scholar |

Rosemond, A. D., Pringle, C. M., Ramirez, A., and Paul, M. J. (2001). A test of top-down and bottom-up control in a detritus-based food web. Ecology 82, 2279–2293.
A test of top-down and bottom-up control in a detritus-based food web.Crossref | GoogleScholarGoogle Scholar |

Ruetz, C. R., Newman, R. M., and Vondracek, B. (2002). Top-down control in a detritus-based food web: fish, shredders, and leaf breakdown. Oecologia 132, 307–315.
Top-down control in a detritus-based food web: fish, shredders, and leaf breakdown.Crossref | GoogleScholarGoogle Scholar |

Schofield, K. A., Pringle, C. M., Meyer, J. L., and Sutherland, A. B. (2001). The importance of crayfish in the breakdown of rhododendron leaf litter. Freshwater Biology 46, 1191–1204.
The importance of crayfish in the breakdown of rhododendron leaf litter.Crossref | GoogleScholarGoogle Scholar |

Silveira, R. M. L., and Moulton, T. P. (2000). Modelling the food web of a stream in Atlantic forest. Acta Limnologica Brasiliensia 12, 63–71.

Sitvarin, M. I., Rypstra, A. L., and Harwood, J. D. (2016). Linking the green and brown worlds through nonconsumptive predator effects. Oikos 125, 1057–1068.
Linking the green and brown worlds through nonconsumptive predator effects.Crossref | GoogleScholarGoogle Scholar |

Souza, M. L., and Moulton, T. P. (2005). The effects of shrimps on benthic material in a Brazilian island stream. Freshwater Biology 50, 592–602.
The effects of shrimps on benthic material in a Brazilian island stream.Crossref | GoogleScholarGoogle Scholar |

Souza, M. L., Moulton, T. P., Silveira, R. M., Krsulovic, F. A., and Brito, E. F. (2007). Responses of Chironomidae (Diptera; Insecta) to the exclusion of shrimps and Ephemeroptera in a coastal forest stream, Rio de Janeiro, Brazil. Brazilian Journal of Biology 67, 47–51.
Responses of Chironomidae (Diptera; Insecta) to the exclusion of shrimps and Ephemeroptera in a coastal forest stream, Rio de Janeiro, Brazil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3pslGjuw%3D%3D&md5=2b25339d9346ff405f425033603a6bd6CAS |

Tank, J. L., Rosi-Marshal, E. J., Griffths, N. A., Entrekin, S. A., and Stephen, M. L. (2010). A review of allocthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29, 118–146.
A review of allocthonous organic matter dynamics and metabolism in streams.Crossref | GoogleScholarGoogle Scholar |

Usio, N. (2000). Effects of crayfish on leaf processing and invertebrate colonisation of leaves in a headwater stream: decoupling of a trophic cascade. Oecologia 124, 608–614.
Effects of crayfish on leaf processing and invertebrate colonisation of leaves in a headwater stream: decoupling of a trophic cascade.Crossref | GoogleScholarGoogle Scholar |

Wallace, J. B., and Webster, J. R. (1996). The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41, 115–139.
The role of macroinvertebrates in stream ecosystem function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksVyrsw%3D%3D&md5=c52541eed1d2bc976b773cdf0cd46843CAS |

Wallace, J. B., Eggert, S. L., Meyer, J. L., and Webster, J. R. (1997). Multiple trophic levels at a forest stream linked to terrestrial litter inputs. Science 277, 102–104.
Multiple trophic levels at a forest stream linked to terrestrial litter inputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVygsL0%3D&md5=990159c193c7a288adf656b96985ec95CAS |

Wantzen, K. M., Yule, C. M., Mathooko, J. M., and Pringle, C. M. (2008) Organic matter processing in tropical streams. In ‘Tropical Stream Ecology’. (Ed. D. Dudgeon.) pp. 44–65. (Academic Press: London, UK.)

Webster, J. R., and Benfield, E. E. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17, 567–594.
Vascular plant breakdown in freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar |

Yule, C. M. (1996). Trophic relationships of the benthic invertebrate fauna of an aseasonal tropical stream on Bougainville Island, Papua New Guinea. Journal of Tropical Ecology 12, 517–534.
Trophic relationships of the benthic invertebrate fauna of an aseasonal tropical stream on Bougainville Island, Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Yule, C. M., Leong, M. Y., Liew, K. C., Ratnarajah, L., Schmidt, K., Wong, H. M., Pearson, R. G., and Boyero, L. (2009). Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. Journal of the North American Benthological Society 28, 404–415.
Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams.Crossref | GoogleScholarGoogle Scholar |