Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Estimating the carbon biomass of marine net phytoplankton from abundance based on samples from China seas

Yang Yang A B , Xiaoxia Sun A C , Mingliang Zhu A , Xuan Luo A and Shan Zheng A
+ Author Affiliations
- Author Affiliations

A Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.

B University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China.

C Corresponding author. Email: xsun@qdio.ac.cn

Marine and Freshwater Research 68(1) 106-115 https://doi.org/10.1071/MF15298
Submitted: 5 August 2015  Accepted: 10 November 2015   Published: 22 February 2016

Abstract

The relationship between carbon biomass and cell abundance in net phytoplankton was determined to improve standing stock research in marine ecology. Based on samples from six cruises in the Yellow Sea and the East China Sea, significant regression equations for all net phytoplankton cells, diatoms, dinoflagellates and each dominant genus were obtained. The relationships could be described by the equation log10 y = k × log10 x + b, where x represents cell abundance based on cell counts (cells m–3), y represents carbon biomass (μg C m–3), and k and b are constants. The values of k and b were 0.48 and 0.49 respectively for total net phytoplankton, 0.75 and –1.46 respectively for diatoms in summer, 0.54 and –0.11 respectively for diatoms in spring and autumn, and 0.92 and –0.90 respectively for dinoflagellates. Regression equations for Chaetoceros, Coscinodiscus, Pseudo-nitzschia, Skeletonema, Ceratium, Protoperidinium and Pyrophacus were also obtained. We suggest using these carbon biomass : cell abundance relationships established for net phytoplankton to assess phytoplankton standing stocks and for reanalysing historical data.

Additional keywords: diatom, dinoflagellate, dominant genus, regression relationship.


References

Álvarez, E., López-Urrutia, Á., Nogueira, E., and Fraga, S. (2011). How to effectively sample the plankton size spectrum? A case study using FlowCAM. Journal of Plankton Research 33, 1119–1133.
How to effectively sample the plankton size spectrum? A case study using FlowCAM.Crossref | GoogleScholarGoogle Scholar |

Atkinson, D., Ciotti, B. J., and Montagnes, D. J. S. (2003). Protists decrease in size linearly with temperature: ca. 2.5% °C–1. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 2605–2611.
Protists decrease in size linearly with temperature: ca. 2.5% °C–1.Crossref | GoogleScholarGoogle Scholar |

Ciotti, A. M., Lewis, M. R., and Cullen, J. J. (2002). Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnology and Oceanography 47, 404–417.
Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFShur4%3D&md5=a289d059034afe0bb7954e470486c852CAS |

DuRand, M. D., Olson, R. J., and Chisholm, S. W. (2001). Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep-sea Research. Part II, Topical Studies in Oceanography 48, 1983–2003.
Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar |

Eppley, R. W., Reid, F. M. H., and Strickland, J. D. H. (1970). Estimates of phytoplankton crop size, growth rate, and primary production. In ‘The Ecology of the Plankton off La Jolla, California, in the Period April Through September, 1967’. (Ed. J. D. H. Strickland.) pp. 33–42. (Scripps Institution of Oceanography: La Jolla, CA.)

Gao, Y., Jiang, Z., Liu, J., Chen, Q., Zeng, J., and Huang, W. (2013). Seasonal variations of net-phytoplankton community structure in the southern Yellow Sea. Journal of Ocean University of China 12, 557–567.
Seasonal variations of net-phytoplankton community structure in the southern Yellow Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCmt7rN&md5=8056735bb7974e3e652cbede6a8bb326CAS |

Gong, G. C., Chen, Y. L., and Liu, K. K. (1996). Chemical hydrography and chlorophyll-a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research 16, 1561–1590.
Chemical hydrography and chlorophyll-a distribution in the East China Sea in summer: implications in nutrient dynamics.Crossref | GoogleScholarGoogle Scholar |

Guo, S., Feng, Y., Wang, L., Dai, M., Liu, Z., Bai, Y., and Sun, J. (2014). Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology Progress Series 516, 103–126.
Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFaqtLY%3D&md5=22de152ebd241a39a8814a406e1bb266CAS |

Harrison, P. J., Zingone, A., Mickelson, M. J., Lehtinen, S., Ramaiah, N., Kraberg, A., Sun, J., McQuatters-Gollop, A., and Jakobsen, H. H. (2015). Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal and Shelf Science 162, 130–142.
Cell volumes of marine phytoplankton from globally distributed coastal data sets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovV2nt7g%3D&md5=bf8fd8ecf72bb53a6c8a6179c6add501CAS |

Huang, W. X., Shen, L. F., and Zhu, L. (1984). Phytoplankton in the Yellow Sea of China. Marine Environmental Research 3, 19–28.

Hunter, B. L., and Laws, E. A. (1981). ATP and chlorophyll-a as estimators of phytoplankton carbon biomass. Limnology and Oceanography 26, 944–956.
ATP and chlorophyll-a as estimators of phytoplankton carbon biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmt1Ghtr8%3D&md5=38c87d530d3149b6a8c34deb4e7aab48CAS |

Jakobsen, H. H., and Carstensen, J. (2011). FlowCAM: sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure. Aquatic Microbial Ecology 65, 75–87.
FlowCAM: sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure.Crossref | GoogleScholarGoogle Scholar |

Jakobsen, H. H., Carstensen, J., Harrison, P. J., and Zingone, A. (2015). Estimating time series phytoplankton carbon biomass: inter-lab comparison of species identification and comparison of volume-to-carbon scaling ratios. Estuarine, Coastal and Shelf Science 162, 143–150.
Estimating time series phytoplankton carbon biomass: inter-lab comparison of species identification and comparison of volume-to-carbon scaling ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosVKksLk%3D&md5=5a9b99c26c733051a53f5c86bff17598CAS |

Kruskopf, M., and Flynn, K. J. (2006). Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist 169, 525–536.
Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvV2ju7g%3D&md5=9cc5129b685c2142f888fa297356d523CAS | 16411955PubMed |

Le Quéré, C., Harrison, S. P., Colin Prentice, I., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cotrim da Cunha, L., Geider, R., and Giraud, X. (2005). Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology 11, 2016–2040.

Le Quéré, C., Prentice, I. C., and Rivkin, R. B. (2006). Modeling interactions between marine ecosystems and climate. Eos, Transactions, American Geophysical Union 87, 452–454.
Modeling interactions between marine ecosystems and climate.Crossref | GoogleScholarGoogle Scholar |

Liu, J. Y. (2013). Status of marine biodiversity of the China Seas. PLoS One 8, e50719.
Status of marine biodiversity of the China Seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFaktbY%3D&md5=553b503ac40f983f93be791e61a4b571CAS | 23320065PubMed |

Menden-Deuer, S., and Lessard, E. J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45, 569–579.
Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsV2ltLk%3D&md5=6144c3c0d8e310ec11d50e74a309bc58CAS |

Moal, J., Martin-Jezequel, V., Harris, R., Samain, J. F., and Poulet, S. (1987). Interspecific and intraspecific variability of the chemical-composition of marine-phytoplankton. Oceanologica Acta 10, 339–346.
| 1:CAS:528:DyaL1cXhs1ClsLs%3D&md5=cf70cfe413b5b2ae9f53eec1583139f4CAS |

Montagnes, D. J. S., Berges, J. A., Harrison, P. J., and Taylor, F. (1994). Estimating carbon, nitrogen, protein, and chlorophyll-a from volume in marine phytoplankton. Limnology and Oceanography 39, 1044–1060.
Estimating carbon, nitrogen, protein, and chlorophyll-a from volume in marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVWjs7Y%3D&md5=7066d5c901e97ddf940c56b840f9b166CAS |

Mulford, R. A., and Norcross, J. J. (1971). Species composition and abundance of net phytoplankton in Virginian coastal waters, 1963–1964. Chesapeake Science 12, 142–155.
Species composition and abundance of net phytoplankton in Virginian coastal waters, 1963–1964.Crossref | GoogleScholarGoogle Scholar |

Mullin, M. M., Sloan, P. R., and Eppley, R. W. (1966). Relationship between carbon content, cell volume and area in phytoplankton. Limnology and Oceanography 11, 307–311.
Relationship between carbon content, cell volume and area in phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Ren, L. L. (2013). Application of flow cytometry and microscopy in phytoplankton community structure in the Yellow Sea and East China Sea. M.Env.Eng. Thesis, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Seber, G. A. F. (1977). ‘Linear Regression Analysis.’ (Wiley: New York.)

See, J. H., Campbell, L., Richardson, T. L., Pinckney, J. L., Shen, R., and Guinasso, N. L. (2005). Combing new technologies for determination of phytoplankton community structure in the northern Gulf of Mexico. Journal of Phycology 41, 305–310.
Combing new technologies for determination of phytoplankton community structure in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Smayda, T. J. (1978). What to count. In ‘Phytoplankton Manual’. (Ed. A. Sournia.) pp. 165–166. (UNESCO: Paris.)

Spaulding, S. A., Jewson, D. H., Bixby, R. J., Nelson, H., and McKnight, D. M. (2012). Automated measurement of diatom size. Limnology and Oceanography, Methods 10, 882–890.
Automated measurement of diatom size.Crossref | GoogleScholarGoogle Scholar |

Strathmann, R. R. (1967). Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography 12, 411–418.
Estimating the organic carbon content of phytoplankton from cell volume or plasma volume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhvF2nsw%3D%3D&md5=ee330f7111a13a70ca20b95c2b31f4b0CAS |

Sun, J., Liu, D., and Qian, S. (2000). Estimating biomass of phytoplankton in the Jiaozhou Bay I. Phytoplankton biomass estimated from cell volume and plasma volume. Acta Oceanologica Sinica 19, 97–110.

Yentsch, C. S., and Ryther, J. H. (1959). Relative significance of the net phytoplankton and nanoplankton in the waters of Vineyard Sound. Journal du Conseil, Conseil International pour l’Exploration de la Mer 24, 231–238.
Relative significance of the net phytoplankton and nanoplankton in the waters of Vineyard Sound.Crossref | GoogleScholarGoogle Scholar |