Genetic structure and unique origin of the introduced blue mussel Mytilus galloprovincialis in the north-western Pacific: clues from mitochondrial cytochrome c oxidase I (COI) sequences
Zhiqiang Han A , Yangli Mao B , Bonian Shui A , Takashi Yanagimoto C and Tianxiang Gao A DA Fishery College, Zhejiang Ocean University, 1 Haida South Road,Zhoushan, Zhejiang 316022, China.
B Institute of Evolution and Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
C National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama 236-8648, Japan.
D Corresponding author. Email: gaotianxiang0611@163.com
Marine and Freshwater Research 68(2) 263-269 https://doi.org/10.1071/MF15186
Submitted: 11 May 2015 Accepted: 2 December 2015 Published: 24 March 2016
Abstract
As an introduced species, the Mediterranean blue mussel Mytilus galloprovincialis is widely distributed in the north-western Pacific. However, the mussel's introduction pathway, colonisation route and source of introduction are unclear. In the present study, genetic variation among 11 colonised populations of M. galloprovincialis in the north-western Pacific was analysed using fragments of the mitochondrial cytochrome c oxidase I (COI) gene. Analysis of molecular variance (AMOVA) detected no significant differences at any hierarchical level, and all fixation index (FST) values were non-significant, reflecting a founder event and potential high dispersal ability. Phylogenetic analysis showed that populations of M. galloprovincialis in the north-western Pacific were introduced from the middle Mediterranean Sea and that the Dalian population was the first colonised population in the coastal waters of China. By assessing the origin of introduced populations of M. galloprovincialis, the present study provides new insights into the biogeography of M. galloprovincialis.
Additional keywords: biological invasion, colonisation history, dispersal, mitochondrial DNA.
References
Asif, J. H., and Krug, P. J. (2012). Lineage distribution and barriers to gene flow among populations of the globally invasive marine mussel Musculista senhousia. Biological Invasions 14, 1431–1444.| Lineage distribution and barriers to gene flow among populations of the globally invasive marine mussel Musculista senhousia.Crossref | GoogleScholarGoogle Scholar |
Blakeslee, A. M., Byers, J. E., and Lesser, M. P. (2008). Solving cryptogenic histories using host and parasite molecular genetics: the resolution of Littorina littorea’s North American origin. Molecular Ecology 17, 3684–3696.
| Solving cryptogenic histories using host and parasite molecular genetics: the resolution of Littorina littorea’s North American origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Wmu7%2FP&md5=68f4619e7f0023df47e8995fe71da0c3CAS | 18643882PubMed |
Cabezas, M. P., Xavier, R., Branco, M., Santos, A. M., and Guerra-García, J. M. (2014). Invasion history of Caprella scaura Templeton, 1836 (Amphipoda: Caprellidae) in the Iberian Peninsula: multiple introductions revealed by mitochondrial sequence data. Biological Invasions 16, 2221–2245.
| Invasion history of Caprella scaura Templeton, 1836 (Amphipoda: Caprellidae) in the Iberian Peninsula: multiple introductions revealed by mitochondrial sequence data.Crossref | GoogleScholarGoogle Scholar |
Daguin, C., and Borsa, P. (2000). Genetic relationships of Mytilus galloprovincialis Lamarck populations worldwide: evidence from nuclear-DNA markers. Geological Society of London, Special Publications 177, 389–397.
| Genetic relationships of Mytilus galloprovincialis Lamarck populations worldwide: evidence from nuclear-DNA markers.Crossref | GoogleScholarGoogle Scholar |
Dias, P. J., Fotedar, S., and Snow, M. (2014). Characterization of mussel (Mytilus sp.) populations in Western Australia and evaluation of potential genetic impacts of mussel spat translocation from inter-state. Marine and Freshwater Research 65, 486–496.
| Characterization of mussel (Mytilus sp.) populations in Western Australia and evaluation of potential genetic impacts of mussel spat translocation from inter-state.Crossref | GoogleScholarGoogle Scholar |
Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=250a741994f4e76df8d52eb5da21d9c7CAS | 1644282PubMed |
Excoffier, L., Laval, G., and Schneider, S. (2005). ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=f87d0686d3a2b56a2918430d0ac2db0bCAS |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=6f8e6622cb69660a6980e74859c7145dCAS | 7881515PubMed |
Gérard, K., Bierne, N., Borsa, P., Chenuil, A., and Féral, J. P. (2008). Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from northern and southern hemispheres and strong genetic differentiation among southern populations. Molecular Phylogenetics and Evolution 49, 84–91.
| Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from northern and southern hemispheres and strong genetic differentiation among southern populations.Crossref | GoogleScholarGoogle Scholar | 18678263PubMed |
Hänfling, B., Carvalho, G. C., and Brandl, R. (2002). Mt-DNA sequences and possible invasion pathways of the Chinese mitten crab. Marine Ecology Progress Series 238, 307–310.
| Mt-DNA sequences and possible invasion pathways of the Chinese mitten crab.Crossref | GoogleScholarGoogle Scholar |
Hilbish, T. J., Mullinax, A., Dolven, S. I., Meyer, A., Koehn, R. K., and Rawson, P. D. (2000). Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Marine Biology 136, 69–77.
| Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration.Crossref | GoogleScholarGoogle Scholar |
Hosomi, A. (1977). Ecological studies on the mussel Mytilus galloprovincialis (Lamarck), 1. The fluctuation of its coverage. Japanese Journal of Ecology 27, 311–318.
Kanamaru, T. (1935). Notes on some cases of artificial propagation of molluscs. Venus: the Japanese Journal of Malacology 15, 145–149.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
| A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=3bac076995f41cdb59e7979deedea5c9CAS | 7463489PubMed |
Korrida, A., Jadallah, S. J., Izaabel, H., and Benhissoune, S. (2010). Genetic diversity analysis of the natural populations of Mediterranean Mussels [Mytilus galloprovincialis (Lmk.)] in Agadir Bay: assessment of the molecular polymorphism and environmental impact. KBM Journal of Biology 1, 18–25.
Lane, D. J. W., Beaumont, A. R., and Hunter, J. R. (1985). Byssus drifting and the drifting threads of the young post-larval mussel Mytilus edulis. Marine Biology 84, 301–308.
| Byssus drifting and the drifting threads of the young post-larval mussel Mytilus edulis.Crossref | GoogleScholarGoogle Scholar |
McDonald, J. H., Seed, R., and Koehn, R. K. (1991). Allozymes and morphometric characters of three species of Mytilus in the northern and southern hemispheres. Marine Biology 111, 323–333.
| Allozymes and morphometric characters of three species of Mytilus in the northern and southern hemispheres.Crossref | GoogleScholarGoogle Scholar |
Nei, M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York.)
Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics 25, 547–572.
| Genetic divergence, reproductive isolation, and marine speciation.Crossref | GoogleScholarGoogle Scholar |
Peters, N. (1933). Lebenskundlicher Teil. In ‘Die chinesische Wollhandkrabbe (Eriocheir sinensis H. Milne-Edwards) in Deutschland. Zoologischer Anzeiger, vol. 104’. (Eds N. Peters, A. Panning, and W. Schnakenbeck.) pp. 59–155. (Akademische Verlagsgesell schaft M.B.H.: Leipzig).
Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
| An exact test for population differentiation.Crossref | GoogleScholarGoogle Scholar |
Riginos, C., Hickerson, M. J., Henzler, C. M., and Cunningham, C. W. (2004). Differential patterns of male and female mtDNA exchange across the Atlantic Ocean in the blue mussel, Mytilus edulis. Evolution 58, 2438–2451.
| Differential patterns of male and female mtDNA exchange across the Atlantic Ocean in the blue mussel, Mytilus edulis.Crossref | GoogleScholarGoogle Scholar | 15612287PubMed |
Sanjuan, A., Zapata, C., and Alvarez, G. (1994). Mytilus galloprovincialis and M. edulis on the coasts of the Iberian Peninsula. Marine Ecology Progress Series 113, 131–146.
| Mytilus galloprovincialis and M. edulis on the coasts of the Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar |
Shen, W., Ye, M., Wang, R. X., Shi, G., and Zhao, S. J. (2011). Natural distribution and ecological impacts of the aline species Mytilus galbprovincialis in the Zhoushan Waters. Journal of Oceanography in Taiwan Straits 30, 250–256.
| Natural distribution and ecological impacts of the aline species Mytilus galbprovincialis in the Zhoushan Waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVKhsr4%3D&md5=0bc9903d8ed26813055bed0d44fd64f4CAS |
Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279.
| Isolation by distance in equilibrium and non-equilibrium populations.Crossref | GoogleScholarGoogle Scholar |
Solano, E., Franchini, P., Colangelo, P., Capanna, E., and Castiglia, R. (2013). Multiple origins of the western European house mouse in the Aeolian Archipelago: clues from mtDNA and chromosomes. Biological Invasions 15, 729–739.
| Multiple origins of the western European house mouse in the Aeolian Archipelago: clues from mtDNA and chromosomes.Crossref | GoogleScholarGoogle Scholar |
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=3e5229b4e8e7c92ca9b57d9a21648cb1CAS | 24132122PubMed |
Wang, R. Z. (1997). ‘China Animal Fauna: Mytioida.’ (Science Press: Beijing.)
Wang, C., Li, S., Fu, C., Gong, X., Huang, L., Song, X., and Zhao, Y. (2009). Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis. Biological Invasions 11, 389–399.
| Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis.Crossref | GoogleScholarGoogle Scholar |
Wilkins, N. P., Fujino, K., and Gosling, E. M. (1983). The mediterranean mussel Mytilus galloprovincialis Lmk. in Japan. Biological Journal of the Linnean Society. Linnean Society of London 20, 365–374.
| The mediterranean mussel Mytilus galloprovincialis Lmk. in Japan.Crossref | GoogleScholarGoogle Scholar |
Zhang, X., Qi, Z. Y., and Li, J. M. (1955). ‘The Economic Mollusk in Northern China.’ (Science Press: Beijing.)