Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Accumulation of sulfidic sediments in a channelised inland river system, southern Australia

Vanessa N. L. Wong A B C , Michael D. Cheetham B , Richard T. Bush B , Leigh A. Sullivan B and Nicholas J. Ward B
+ Author Affiliations
- Author Affiliations

A School of Earth, Atmosphere and Environment, Monash University, Clayton, Vic. 3800, Australia.

B Southern Cross Geoscience, Southern Cross University, Military Road, Lismore, NSW 2480, Australia.

C Corresponding author. Email: vanessa.wong@monash.edu

Marine and Freshwater Research 67(11) 1655-1666 https://doi.org/10.1071/MF15080
Submitted: 26 February 2015  Accepted: 4 August 2015   Published: 19 October 2015

Abstract

Accumulation of sulfidic sediments in freshwater environments is a relatively recent phenomenon and an emerging environmental issue. In the present study, benthic sediments along short (~250 m) reaches of an inland freshwater river in south-eastern Australia were examined to determine the abundance and vertical distribution of fine-grained organic sulfidic sediments, identified by acid volatile sulfide (AVS) and chromium-reducible sulfur (SCR) contents. Sulfidic sediments (up to 404 mmol kg–1 SCR) preferentially accumulated in zones immediately overlying coarse sandy bed material. Conversely, where bed material was clay or silt dominated, comparatively limited sulfidic sediment had accumulated (where AVS and SCR were not detected). This suggests that the hydraulic conductivity of the underlying bed material could play a role in the formation of sulfidic sediments and that the overlying water column is not the sole source of SO42–. Evidence suggests that accumulation of sulfidic materials occurred preferentially downstream of channel obstructions, such as submerged logs or in scour pools. However, sediment accumulation was not limited to lower-energy parts of the channel, as would be expected for fine-grained organic sediments. Evidence of reworking, burial or sulfide formation at depth highlights the dynamism of the system and its differences to many coastal systems where these sediments are commonly found.

Additional keywords: channel morphology, freshwater river, organic sediments, sedimentology.


References

Agrawal, Y. C., McCave, I. N., and Riley, J. B. (1991). Laser diffraction style analysis. In ‘Principles, Methods and Applications of Particle Size Analysis’. (Ed. J. P. M. Syvitski.) pp. 119–128. (Cambridge University Press: New York.)

Ahern, C. R., McElnea, A. E., and Sullivan, L. A. (2004). Acid sulfate soils laboratory methods guidelines. Queensland Department of Natural Resources, Mines and Energy, Brisbane, Qld, Australia.

Aherne, J., Larssen, T., Cosby, B. J., and Dillon, P. J. (2006). Climate variability and forecasting surface water recovery from acidification: modelling drought-induced sulphate release from wetlands. The Science of the Total Environment 365, 186–199.
Climate variability and forecasting surface water recovery from acidification: modelling drought-induced sulphate release from wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFyktbk%3D&md5=827c4985f102bc0d9b1c479fd4d57c2fCAS | 16616319PubMed |

Baldwin, D. S., and Capon, S. J. (2011). ‘Sulfidic Sediments in Inland Waterways.’ (National Water Commission: Canberra, ACT.)

Baldwin, D. S., and Fraser, M. (2009). Rehabilitation options for inland waterways impacted by sulfidic sediments – a synthesis. Journal of Environmental Management 91, 311–319.
Rehabilitation options for inland waterways impacted by sulfidic sediments – a synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFGhsg%3D%3D&md5=276b4320df4f91b6c68323d958a77c99CAS | 19906482PubMed |

Baldwin, D. S., and Mitchell, A. (2012). Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Water Research 46, 965–974.
Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGnu7s%3D&md5=a475be1ea6ec12a13e74ebcc37e6339bCAS | 22204939PubMed |

Baldwin, D. S., Hall, K. C., Rees, G. N., and Richardson, A. J. (2007). Development of a protocol for recognizing sulfidic sediments (potential acid sulfate soils) in freshwater wetlands. Ecological Management & Restoration 8, 56–60.
Development of a protocol for recognizing sulfidic sediments (potential acid sulfate soils) in freshwater wetlands.Crossref | GoogleScholarGoogle Scholar |

Bates, A.L., Orem, W.H., Harvey, J.W., Spiker, E.C. (2000). Geochemistry of sulfur in the Florida Everglades; 1994 through 1999. US Department of the Interior, US Geological Survey. Available at http://pubs.usgs.gov/of/2001/0007/report.pdf [Verified 13 August 2015].

Bates, A. L., Orem, W. H., Harvey, J. W., and Spiker, E. C. (2002). Tracing sources of sulfur in the Florida Everglades. Journal of Environmental Quality 31, 287–299.
Tracing sources of sulfur in the Florida Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCnsrs%3D&md5=b1691552794c8673fc79c396f33a85f1CAS | 11837434PubMed |

Berner, R. A. (1984). Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta 48, 605–615.
Sedimentary pyrite formation: An update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitFeisb0%3D&md5=4f7de92795930a5bbf6758e1f9c601ebCAS |

Boman, A., Fröjdö, S., Backlund, K., and Aström, M. E. (2010). Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide. Geochimica et Cosmochimica Acta 74, 1268–1281.
Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVCjtA%3D%3D&md5=d8d624f304d525705951573b02c91b70CAS |

Burton, E. D., Bush, R. T., and Sullivan, L. A. (2006a). Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality. Environmental Science & Technology 40, 1217–1222.
Acid-volatile sulfide oxidation in coastal flood plain drains: iron–sulfur cycling and effects on water quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1OgtQ%3D%3D&md5=05c3adfb8db77846581c8293980857b7CAS |

Burton, E. D., Bush, R. T., and Sullivan, L. A. (2006b). Elemental sulfur in drain sediments associated with acid sulfate soils. Applied Geochemistry 21, 1240–1247.
Elemental sulfur in drain sediments associated with acid sulfate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFGltr8%3D&md5=f8243e3daa0cb5b64a6f533a2cc0a40fCAS |

Burton, E. D., Bush, R. T., Sullivan, L. A., and Mitchell, D. R. G. (2007). Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands. Geochimica et Cosmochimica Acta 71, 4456–4473.
Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVertb3E&md5=1078c8d169190476705582b7b4f38d2bCAS |

Burton, E. D., Sullivan, L. A., Bush, R. T., Johnston, S. G., and Keene, A. F. (2008). ). A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils. Applied Geochemistry 23, 2759–2766.
A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGnsLjK&md5=597ddf66d8443fc1cf97b705c624be9cCAS |

Bush, R. T., Fyfe, D., and Sullivan, L. A. (2004a). Occurrence and abundance of monosulfidic black ooze in coastal acid sulfate soil landscapes. Australian Journal of Soil Research 42, 609–616.
Occurrence and abundance of monosulfidic black ooze in coastal acid sulfate soil landscapes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslShu7Y%3D&md5=60178b5ad079295071fcb9698a835ac5CAS |

Bush, R. T., Sullivan, L. A., Fyfe, D., and Johnston, S. (2004b). Redistribution of monosulfidic black oozes by floodwaters in a coastal acid sulfate soil floodplain. Australian Journal of Soil Research 42, 603–607.
Redistribution of monosulfidic black oozes by floodwaters in a coastal acid sulfate soil floodplain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslShu7s%3D&md5=d68ac0c7a898ec5115c9664c36bf1666CAS |

Cheetham, M. D., Wong, V. N. L., Bush, R. T., Sullivan, L. A., Ward, N. J., and Zawadzki, A. (2012). Mobilisation, alteration, and redistribution of monosulfidic sediments in inland river systems. Journal of Environmental Management 112, 330–339.
Mobilisation, alteration, and redistribution of monosulfidic sediments in inland river systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSlsLjP&md5=9a4e41c9948bcb168c9b40ac6304c585CAS | 22964040PubMed |

Chen, X. (2004). Streambed hydraulic conductivity for rivers in south-central Nebraska. Journal of the American Water Resources Association 40, 561–573.
Streambed hydraulic conductivity for rivers in south-central Nebraska. Crossref | GoogleScholarGoogle Scholar |

Daniels, M. D. (2006). Distribution and dynamics of large woody debris and organic matter in a low-energy meandering stream. Geomorphology 77, 286–298.
Distribution and dynamics of large woody debris and organic matter in a low-energy meandering stream.Crossref | GoogleScholarGoogle Scholar |

Fang, T., Li, X., and Zhang, G. (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety 61, 420–431.
Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1WktLY%3D&md5=51f4e4778650ceb024ef14f16f98cff4CAS | 15922809PubMed |

Firman, J. (1969). Quaternary period. In ‘Handbook of South Australian Geology’. (Ed. L. Parkin.) pp. 204–233. (Geological Survey of South Australia: Adelaide, SA.)

Fitzpatrick, R. W., Shand, P., and Merry, R. H. (2009). Acid sulfate soils. In ‘Natural History of the Riverland and Murraylands’. (Ed. J. T. Jennings.) pp. 65–111. (Royal Society of South Australia (Inc.): Adelaide, SA.)

Folk, R. L. (1980). ‘Petrology of Sedimentary Rocks.’ (Hemphill Publishing Company: Austin, TX, USA.)

Galloway, J. N. (1995). Acid deposition: perspectives in time and space. Water, Air, and Soil Pollution 85, 15–24.
Acid deposition: perspectives in time and space.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVajsrY%3D&md5=a519c41a41b5e79d3a409d9fac0e413aCAS |

Gerritse, R. G. (1999). Sulphur, organic carbon and iron relationships in estuarine and freshwater sediments: effects of sedimentation rate. Applied Geochemistry 14, 41–52.
Sulphur, organic carbon and iron relationships in estuarine and freshwater sediments: effects of sedimentation rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlShtA%3D%3D&md5=8aef87c809dbeb64b786511f7ab6c2a6CAS |

Grealish, G. J., Fitzpatrick, R. W., and Shand, P. (2014). Regional distribution trends and properties of acid sulfate soils during severe drought in wetlands along the lower River Murray, South Australia: supporting hazard assessment. Geoderma Regional 2–3, 60–71.
Regional distribution trends and properties of acid sulfate soils during severe drought in wetlands along the lower River Murray, South Australia: supporting hazard assessment.Crossref | GoogleScholarGoogle Scholar |

Hall, K. C., Baldwin, D. S., Rees, G. N., and Richardson, A. J. (2006). Distribution of inland wetlands with sulfidic sediments in the Murray–Darling Basin, Australia. The Science of the Total Environment 370, 235–244.
Distribution of inland wetlands with sulfidic sediments in the Murray–Darling Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvF2ns70%3D&md5=49bd1d583606758216e1ecf17a815844CAS | 16930680PubMed |

Hsieh, Y. P., Chung, S. W., Tsau, Y. J., and Sue, C. T. (2002). Analysis of sulfides in the presence of ferric minerals by diffusion methods. Chemical Geology 182, 195–201.
Analysis of sulfides in the presence of ferric minerals by diffusion methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSltL0%3D&md5=78119467055da97676c6f6c058d2cde2CAS |

Jansen, A. M., and Roelofs, J. G. M. (1996). Restoration of Cirsio–Molinietum wet meadows by sod cutting. Ecological Engineering 7, 279–298.
Restoration of Cirsio–Molinietum wet meadows by sod cutting.Crossref | GoogleScholarGoogle Scholar |

Johnston, S. G., Slavich, P. G., and Hirst, P. (2005). Changes in surface water quality after inundation of acid sulfate soils of different vegetation cover. Australian Journal of Soil Research 43, 1–12.
Changes in surface water quality after inundation of acid sulfate soils of different vegetation cover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2rsr0%3D&md5=897c7cef5911b7d6fdbbcdef47df2245CAS |

Johnston, S. G., Keene, A. F., Burton, E. D., Bush, R. T., Sullivan, L. A., McElnea, A. E., Ahern, C. R., Smith, C. D., Powell, B., and Hocking, R. K. (2010). Arsenic mobilization in a seawater inundated acid sulfate soil. Environmental Science & Technology 44, 1968–1973.
Arsenic mobilization in a seawater inundated acid sulfate soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKitLk%3D&md5=61a587d48fd52e2e92475f0c61c95307CAS |

Lamers, L., Dolle, G., Van Den Berg, S., Van Delft, S., and Roelofs, J. (2001). Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry 55, 87–101.
Differential responses of freshwater wetland soils to sulphate pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvV2ru7g%3D&md5=d5df3b70157b8d32ba8ea1d51cb0b033CAS |

Lamontagne, S., Hicks, W. S., Fitzpatrick, R. W., and Rogers, S. (2006). Sulfidic materials in dryland river wetlands. Marine and Freshwater Research 57, 775–788.
Sulfidic materials in dryland river wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OgsLfL&md5=294813c0175af41a26528659d68bdb4fCAS |

Macdonald, B. C. T., White, I., Astron, M. E., Keene, A. F., Melville, M. D., and Reynolds, J. K. (2007). Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia. Applied Geochemistry 22, 2695–2705.
Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGjtbvM&md5=d25c48a0267178b3e3c83c3e956ec750CAS |

Macumber, P. G. (1968). Interrelationship between physiography, hydrology, sedimentation and salinization of the Loddon River Plains, Australia. Journal of Hydrology 7, 39–57.
Interrelationship between physiography, hydrology, sedimentation and salinization of the Loddon River Plains, Australia.Crossref | GoogleScholarGoogle Scholar |

Maheshwari, B. L., Walker, K. F., and McMahon, T. A. (1995). Effects of regulation on the flow regime of the river Murray, Australia. Regulated Rivers: Research and Management 10, 15–38.
Effects of regulation on the flow regime of the river Murray, Australia.Crossref | GoogleScholarGoogle Scholar |

MDBA (2011). ‘Live River Data.’ (Murray–Darling Basin Authority, Australian Government: Canberra, ACT.)

Moncaster, S. J., Bottrell, S. H., Tellam, J. H., Lloyd, J. W., and Konhauser, K. O. (2000). Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. Journal of Contaminant Hydrology 43, 147–163.
Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitleltrg%3D&md5=8429b72226bffa06520e045359eb5ae5CAS |

Morgan, B., Burton, E. D., and Rate, A. W. (2012). Iron monosulfide enrichment and the presence of organosulfur in eutrophic estuarine sediments. Chemical Geology 296–297, 119–130.
Iron monosulfide enrichment and the presence of organosulfur in eutrophic estuarine sediments.Crossref | GoogleScholarGoogle Scholar |

Mosley, L. M., Fitzpatrick, R. W., Palmer, D., Leyden, E., and Shand, P. (2014). Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought. The Science of the Total Environment 485–486, 281–291.
Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought.Crossref | GoogleScholarGoogle Scholar | 24727046PubMed |

O’Connell, M., Baldwin, D. S., Robertson, A. I., and Rees, G. (2000). Release and bioavailability of dissolved organic matter from floodplain litter: influence of origin and oxygen levels. Freshwater Biology 45, 333–342.
Release and bioavailability of dissolved organic matter from floodplain litter: influence of origin and oxygen levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1Omu7g%3D&md5=a314dacd95ffb16fc74fdab905af19e0CAS |

Rees, G. N., Baldwin, D. S., Watson, G. O., and Hall, K. C. (2010). Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. The Science of the Total Environment 409, 134–139.
Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lt7%2FL&md5=b28989b193b5b4587050f89db1213739CAS | 20934202PubMed |

Rickard, D., and Morse, J. W. (2005). Acid volatile sulfide (AVS). Marine Chemistry 97, 141–197.
Acid volatile sulfide (AVS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2qurrI&md5=82afff1fd2adee50481000b006c6c753CAS |

Sammut, J., White, I., and Melville, M. D. (1995). Estuarine acidification: impacts on aquatic biota of draining acid sulphate soils. Australian Geographical Studies 33, 89–100.
Estuarine acidification: impacts on aquatic biota of draining acid sulphate soils.Crossref | GoogleScholarGoogle Scholar |

Scott, J. A. (1992). ‘Vegetation of the Balranald–Swan Hill Area, Cunninghamia Volume 2 (4).’ (Royal Botanic Gardens: Sydney.)

Smith, J. (2004). Chemical changes during oxidation of iron monosulfide-rich sediments. Australian Journal of Soil Research 42, 659–666.
Chemical changes during oxidation of iron monosulfide-rich sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslSgsrs%3D&md5=fe1af0a362e7727748f672033420b2eeCAS |

Stone, T. (2006). The late-Holocene origin of the modern Murray River course, southeastern Australia. The Holocene 16, 771–778.
The late-Holocene origin of the modern Murray River course, southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Sullivan, L. A., Bush, R. T., and Fyfe, D. (2002). Acid sulfate soil drain ooze: distribution, behaviour and implications for acidification and deoxygenation of waterways. In ‘Acid Sulfate Soils in Australia and China’. (Eds C. Lin, M. Melville, and L. A. Sullivan.) pp. 91–99. (Science Press: Beijing.)

Sullivan, L. A., Fitzpatrick, R. W., Bush, R. T., Burton, E. D., Shand, P., and Ward, N. J. (2009a). Modifications to the classification of acid sulfate soil material. Southern Cross Geoscience, Southern Cross University, Lismore, NSW.

Sullivan, L. A., Ward, N. J., Bush, R. T., and Burton, E. D. (2009b). Improved identification of sulfidic soil materials by a modified incubation method. Geoderma 149, 33–38.
Improved identification of sulfidic soil materials by a modified incubation method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2nurw%3D&md5=81e8f7a446bdd6e686e2fa248f896c52CAS |

Ward, N. J., Bush, R. T., Burton, E. D., Appleyard, S., Wong, S., Sullivan, L. A., and Cheeseman, P. J. (2010). Monosulfidic black ooze accumulations in sediments of the Geographe Bay area, Western Australia. Marine Pollution Bulletin 60, 2130–2136.
Monosulfidic black ooze accumulations in sediments of the Geographe Bay area, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKmtL7L&md5=1513b40a81743a0b4ea014db4e650549CAS | 20727554PubMed |

Ward, N. J., Bush, R. T., Tulau, M., Sullivan, L. A., Coughran, J., Wong, V. N. L., Cheetham, M., and Morand, D. (2012). Distribution, characteristics and environmental hazard of acid sulfate soils in the Edward–Wakool channel system, NSW, Australia. In ‘Proceedings of the 3rd National Acid Sulfate Soils Conference’, 6–7 March 2012, Melbourne. (Eds R. T. Bush.) (Southern Cross University.) Available at http://scu.edu.au/nationalassconference/2012/index.php/3/ [Verified 26 August 2015].

Whitworth, K. L., and Baldwin, D. S. (2011). Reduced sulfur accumulation in salinised sediments. Environmental Chemistry 8, 198–206.
Reduced sulfur accumulation in salinised sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yisrk%3D&md5=cb11cc237432c209a4e5f7639401fc65CAS |

Wong, V. N. L., Johnston, S. G., Burton, E. D., Bush, R. T., Sullivan, L. A., and Slavich, P. G. (2013). Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments. Water Research 47, 821–832.
Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslektrfP&md5=2836de9bea31009a9cb5cad22230c43cCAS |

Xu, P., and Shao, Y. (2002). A salt-transport model within a land-surface scheme for studies of salinisation in irrigated areas. Environmental Modelling & Software 17, 39–49.
A salt-transport model within a land-surface scheme for studies of salinisation in irrigated areas.Crossref | GoogleScholarGoogle Scholar |