Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Microphytoplankton and ciliate communities’ structure and distribution in a stressed area of the south coast of Sfax, Tunisia (eastern Mediterranean Sea)

Amira Rekik A , Jannet Elloumi A B , Dorra Chaari A and Habib Ayadi A
+ Author Affiliations
- Author Affiliations

A University of Sfax, Faculty of Sciences of Sfax, Department of Sciences of Life, Research Unity UR/11ES72 Biodiversity and Aquatic Ecosystem, Street Soukra kilomètre 3.5, BP 1171, CP 3000 Sfax, Tunisia.

B Corresponding author. Email: jannetelloumi@yahoo.fr

Marine and Freshwater Research 67(10) 1445-1462 https://doi.org/10.1071/MF15057
Submitted: 15 February 2015  Accepted: 9 June 2015   Published: 28 September 2015

Abstract

The environmental parameters, microphytoplankton and ciliate communities in the area were studied in spring and autumn at 20 stations along the coast south of Sfax over two seasons during 2011. The results showed that the environmental parameters indicated high nutrient levels and their concentrations ranges reported as criteria of eutrophication in coastal waters. A total of 78 microphytoplankton species were identified, belonging to Diatoms, Dinoflagellates, Cyanobacteriae, Euglenophyceae, Dictyochophyceae and Chlorophyceae. The numerical density of phytoplankton was high over the whole area, with season averages between 44.10 × 102 ± 41.93 × 102 and 103.55 × 102 ± 107.33 × 102 cells L–1. A total of 58 ciliate species were identified at all of the stations. Tintinnids abundance was generally higher than naked ciliate abundance reported for autumn and spring seasons, both at the surface layer and water–sediment interface. One striking point was that ciliate abundance was unchanged in autumn (4 × 102 cells L–1) but was still higher in spring (6 × 102 cells L–1). Some species reported in this study are commonly found in the stressed coastal waters.

Additional keywords: environmental parameters, pollution.


References

Alder, V. A. (1999). Tintinnoinea. In ‘South Atlantic Zooplankton’. (Ed. D. Boltovsky.) pp. 321–384. (Backhuys Publishers: Leiden, Netherlands.)

American Public Health Association (APHA) (1992). ‘Standard Methods for the Examination of Water and Wastewater.’ (American Public Health Association: Washington, DC.)

Artigas, M. L., Llebot, C., Ross, O. N., Neszi, N. Z., Rodellas, V., Garcia-Orellana, J., Masqué, P., Piera, J., Estrada, M., and Berdalet, E. (2014). Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary. Deep-sea Research. Part II, Topical Studies in Oceanography 101, 180–192.
Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary.Crossref | GoogleScholarGoogle Scholar |

Azov, Y. (1986). Seasonal patterns of phytoplankton productivity and abundance in nearshore oligothropic waters of the Levantin Basin (Mediterranean). Journal of Plankton Research 8, 41–53.
Seasonal patterns of phytoplankton productivity and abundance in nearshore oligothropic waters of the Levantin Basin (Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Baati, H., Gargouri, D., and Azri, C. (2011). Impact of a mixed ‘industrial and domestic’ wastewater effluent on the southern coastal sediments of Sfax (Tunisia) in the Mediterranean Sea. International Journal of Environmental of Research 5, 691–704.

Balech, E. (1959). Tintinnoinea del Mediterraneo. Trabajos del Instituto Español de Oceanografía 28, 1–88.

Balech, E. (1988). ‘Los Dinoflagelados del Atlantico Sudoccidental.’ (Instituto Espanol de Oceanografia (Publicaciones especiales): Madrid.)

Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F., Messaoudi, S., Issaoui, H., Aleya, L., and Bouain, A. (2009). Phytoplankton dynamics related to water mass properties in the Gulf of Gabes: ecological implications. Journal of Marine Systems 75, 216–226.
Phytoplankton dynamics related to water mass properties in the Gulf of Gabes: ecological implications.Crossref | GoogleScholarGoogle Scholar |

Berdalet, E., and Estrada, M. (2008). Modulación de la dinámica de HABs por la turbulencia de pequeña escala. In ‘Avancesy Tendencias en Fitoplancton Tóxico y Biotoxinas. Actas de la IX Reunion Ibérica sobre Fitoplancton Tóxico y Biotoxinas’, 7–10 May 2007, Cartagena, Colombia. (Ed. J. Gilabert.) pp. 1–12. (Universidad Politécnica de Cartagena: Cartagena, Colombia.)

Berdalet, E., Peters, F., Koumandou, L., Roldán, C., Guadayol, O., and Estrada, M. (2007). Species-specific response of dinoflagellates to quantified small-scale turbulence. Journal of Phycology 43, 965–977.
Species-specific response of dinoflagellates to quantified small-scale turbulence.Crossref | GoogleScholarGoogle Scholar |

Bernard, C., and Rassoulzadegan, F. (1993). The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids. Journal of Plankton Research 15, 361–373.
The role of picoplankton (cyanobacteria and plastidic picoflagellates) in the diet of tintinnids.Crossref | GoogleScholarGoogle Scholar |

Blanco, A. C., Nadaoka, K., and Yamamoto, T. (2008). Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island, Southwest Japan. Marine Environmental Research 66, 520–535.
Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island, Southwest Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaqsrnF&md5=34702c854dfdcbf4a07d181ced1ba4fbCAS | 18849068PubMed |

Bojanić, N., Šolic, M., Krstulovic, N., Šestanovic, S., Marasovic, I., and Nincevic, Z. (2005). Temporal variability in abundance and biomass of ciliates and copepods in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea). Helgoland Marine Research 59, 107–120.
Temporal variability in abundance and biomass of ciliates and copepods in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea).Crossref | GoogleScholarGoogle Scholar |

Bolli, L., Llaveria, G., Garcés, E., Guadayol, Ò., VanLenning, K., Peters, F., and Berdalet, E. (2007). Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence. Journal of Biogeosciences 4, 559–567.
Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GisbbK&md5=c3909cec9738ff7096fa061860ada0daCAS |

Bourrelly, P. (1985). ‘Les Algues d’Eau Douce. Initiation à la Systèmatique. Tome II. Les Algues Bleues et Rouges. Les Euglénieins, Peridiniens et Cryptomonadines.’ (Société Nouvelle des Editions Boubée: Paris.)

Campbell, A. S. (1942). The open sea Tintinnoina of the plankton gathered during the last cruise of the Carnegie. Scientific results of Cruise VII of the Carnegie during 1928–1929 under command of Captain J.P., Ault. Publications 537. (Byrd Press and Carnegie Institution of Washington, Richmond, VA, USA.)

Cermeño, P., Estevez-Blanco, P., and Maranon, E. (2005a). Maximum photosynthetic efficiency of size fractionated phytoplankton assessed by C-14 uptake and fast repetition rate fluorometry. Limnology and Oceanography 50, 1438–1446.
Maximum photosynthetic efficiency of size fractionated phytoplankton assessed by C-14 uptake and fast repetition rate fluorometry.Crossref | GoogleScholarGoogle Scholar |

Cermeño, P., Maranon, E., Rodriguez, J., and Fernandez, E. (2005b). Large-sized phytoplankton sustains higher carbon specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Marine Ecology Progress Series 297, 51–60.
Large-sized phytoplankton sustains higher carbon specific photosynthesis than smaller cells in a coastal eutrophic ecosystem.Crossref | GoogleScholarGoogle Scholar |

Choudhury, A. K., and Pal, R. (2010). Phytoplankton and nutrient dynamics of shallow coastal stations at Bay of Bengal, Eastern Indian coast. Aquatic Ecology 44, 55–71.
Phytoplankton and nutrient dynamics of shallow coastal stations at Bay of Bengal, Eastern Indian coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1antbk%3D&md5=5e312fa7a24a23bbcf8107afe164fb59CAS |

Cloern, J. E., and Dufford, R. (2005). Phytoplankton community ecology: principles applied in San Fran Sisco Bay. Marine Ecology Progress Series 285, 11–28.
Phytoplankton community ecology: principles applied in San Fran Sisco Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsV2lsbk%3D&md5=8a57b495f6d77467feca14efe44c41d1CAS |

Curds, C. (1982). Pelagic protists and pollution. A review of the past decade. Annales de l’Institut Océanographique 58, 117–136.
| 1:CAS:528:DyaL3sXms1Ckuw%3D%3D&md5=ea0ba36f3d1cfdf95f7d8503796c2711CAS |

DGPA (2009). ‘Ministére de l’agriculture, Tunisie, annuaire statistique.’ (Direction Générale de la pêche et de l’aquaculture.)

Dodge, J. D. (1985). ‘Atlas of Dinoflagellates. A Scanning Electron Microscope Survey.’ (Ferrand Press: London.)

Dolan, J. R., and Coats, D. W. (1990). Seasonal abundances of planktonic ciliates and microflagellates in mesohaline Chesapeake Bay waters. Estuarine, Coastal and Shelf Science 31, 157–175.
Seasonal abundances of planktonic ciliates and microflagellates in mesohaline Chesapeake Bay waters.Crossref | GoogleScholarGoogle Scholar |

Doledec, S., and Chessel, D. (1989). Rythmes saisonniers et composantes stationnelles en milieu aquatiqueII. Prise en compte et élimination d’effets dans un tableau faunistique. Acta Oecologica Oecologia Generalis 10, 207–332.

Dorgham, M. M., El-Tohamy, W. S., Abdel Aziz, N. E., El-Ghobashi, A., and Qin, J. G. (2013). Protozoa in a stressed area of the Egyptian Mediterranean coast of Damietta, Egypt. Oceanologia 55, 733–750.
Protozoa in a stressed area of the Egyptian Mediterranean coast of Damietta, Egypt.Crossref | GoogleScholarGoogle Scholar |

Elloumi, J., Guermazi, W., Ayadi, H., Bouain, A., and Aleya, L. (2008). Detection of water and sediments pollution of an arid saltern (Sfax, Tunisia) by coupling the distribution of microorganisms with hydrocarbons. Water, Air, and Soil Pollution 187, 157–171.
Detection of water and sediments pollution of an arid saltern (Sfax, Tunisia) by coupling the distribution of microorganisms with hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVejsLw%3D&md5=d3fea2fa0c5b09866c47528afba01b96CAS |

Elloumi, J., Guermazi, W., Ayadi, H., Bouaın, A., and Aleya, L. (2009). Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). Journal of the Marine Biological Association of the United Kingdom 89, 243–253.
Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia).Crossref | GoogleScholarGoogle Scholar |

Fogg, G. E. (1991). The phytoplanktonic ways of life. New Phytologist 118, 191–232.
The phytoplanktonic ways of life.Crossref | GoogleScholarGoogle Scholar |

Frontier, S. (1973). Etude statistique de la dispersion du zooplancton. Journal of Experimental Marine Biology and Ecology 12, 229–262.
Etude statistique de la dispersion du zooplancton.Crossref | GoogleScholarGoogle Scholar |

Geider, R. J., Platt, T., and Raven, J. A. (1986). Size dependence of growth and photosynthesis in Diatoms: a synthesis. Marine Ecology Progress Series 30, 93–104.
Size dependence of growth and photosynthesis in Diatoms: a synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xktl2isL4%3D&md5=27c6da4cdb8281cd88538a971653606dCAS |

Gómez, F. (2007). Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecologica 32, 188–202.
Trends on the distribution of ciliates in the open Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Hannachi, I., Drira, Z., Belhassen, M., Hamza, A., Ayadi, H., Bouain, A., and Aleya, L. (2009). Abundance and biomass of the ciliate community during a spring cruise in the gulf of Gabès (Eastern Mediterranean Sea, Tunisia). Acta Protozoologica 47, 293–305.

Hourston, M., Potter, I. C., Warwick, R. M., Valesini, F. J., and Clarke, K. R. (2009). Spatial and seasonal variations in the ecological characteristics of the free-living nematode assemblages in a large microtidal estuary. Estuarine, Coastal and Shelf Science 82, 309–322.
Spatial and seasonal variations in the ecological characteristics of the free-living nematode assemblages in a large microtidal estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlOltL0%3D&md5=2f04c31cbb75effe5c3ef59fc2ebea53CAS |

Huber-Pestalozzi, G. (1968). ‘Das Phytoplankton des Susswassars, Halfte, Cryptophyceae, Chloromonadophyceae, Dinophyceae.’ (E. Schweizerbart Verlag: Stuttgart.)

Jiang, J., Wu, S., and Shen, Y. (2007). Effects of seasonal succession and water pollution on the protozoan community structure in an eutrophic lake. Chemosphere 66, 523–532.
Effects of seasonal succession and water pollution on the protozoan community structure in an eutrophic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cqt7zE&md5=9e07af661c6e4aa789f7e98c581bb177CAS | 16822536PubMed |

Jiang, Y., Xu, H., Hua, X., Zhu, M., Al-Rasheid, K. A. S., and Warren, A. (2011). An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Marine Pollution Bulletin 62, 227–235.
An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ersbw%3D&md5=6a236d6491775554b0557c924295a01bCAS | 21112062PubMed |

Jribi, L., Echwikhi, K., Bradai, M. N., and Bouain, A. (2008). Incidental capture of sea turtles by longlines in the Gulf of Gabès (SouthTunisia): a comparative study between bottom and surface longlines. Scientia Marina 72, 337–342.

Kchaou, N., Elloumi, J., Drira, Z., Hamza, A., Ayadi, H., Bouain, A., and Aleya, L. (2009). Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuarine, Coastal and Shelf Science 83, 414–424.
Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2iu7w%3D&md5=a9c3d932875250f34abab79ce849fc54CAS |

Kenworthy, W. J., Wyllie-Echevarria, S., Coles, R. G., Pergent, C., and Pergent-Martini, C. (2006). Seagrass conservation biology: an interdisciplinary science for protection of the seagrass biome. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth and C. M. Duarte.) pp. 595– 623. (Springer: Dordrecht, Netherlands.)

Khemakhem, H., Elloumi, J., Moussa, M., Aleya, L., and Ayadi, H. (2010). The concept of ecological succession applied to phytoplankton over four consecutive years in five ponds featuring a salinity gradient. Estuarine, Coastal and Shelf Science 88, 33–44.
The concept of ecological succession applied to phytoplankton over four consecutive years in five ponds featuring a salinity gradient.Crossref | GoogleScholarGoogle Scholar |

Kofoid, C. A., and Campbell, A. S. (1929). A conspectus of the marine and freshwater Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific 1904–1905. University of California Publications in Zoology 34, 1–403.

Kofoid, C. A., and Campbell, A. S. (1939). The Tintinnoinea of the eastern tropical Pacific. Bulletin of the Museum of Comparative Zoology at Harvard College 84, 1–473.

Leakey, R. J. G., Burkill, P. H., and Sleigh, M. A. (1992). Planktonic ciliates in Southampton Water-abundance, biomass, production, and role in pelagic carbon flow. Marine Biology 114, 67–83.

Litchman, E., Tezanos Pinto, P., Klausmeier, C. A., Thomas, M. K., and Yoshiyama, K. (2010). Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653, 15–28.
Linking traits to species diversity and community structure in phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovV2ntbs%3D&md5=7630b6c80b0a3984224735b58d38010aCAS |

Lohrenz, S. E., Carroll, C. L., Weidermann, A. D., and Tuel, M. (2003). Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf. Continental Shelf Research 23, 1447–1464.
Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf.Crossref | GoogleScholarGoogle Scholar |

Lorenzo, L. M., Arbones, B., Tilstone, G. H., and Figueiras, F. G. (2005). Across-shelf variability of phytoplankton composition, photosynthetic parameters and primary production in the NW Iberian upwelling system. Journal of Marine Systems 54, 157–173.
Across-shelf variability of phytoplankton composition, photosynthetic parameters and primary production in the NW Iberian upwelling system.Crossref | GoogleScholarGoogle Scholar |

Lynn, D. H., and Small, E. B. (1997). A revised classification of the phylum Ciliophora Doflein, 1901. Revista de la Sociedad Mexicana de la Historia Natural de Mexico 47, 65–78.

Marañóon, E., Cermeno, P., Rodriguez, J., Zubkov, M. V., and Harris, R. P. (2007). Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnology and Oceanography 52, 2190–2198.
Scaling of phytoplankton photosynthesis and cell size in the ocean.Crossref | GoogleScholarGoogle Scholar |

Marty, J. C., and Chiavérini, J. (2010). Hydrological changes in the Ligurian Sea (NW Mediterranean, DYFAMED site) during 1995–2007 and biogeochemical consequences. Biogeosciences 7, 2117–2128.
Hydrological changes in the Ligurian Sea (NW Mediterranean, DYFAMED site) during 1995–2007 and biogeochemical consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1agurrI&md5=81d3ef6d977bc75e9b43ea235af5246eCAS |

Marty, J. C., Chiavérini, J., Pizay, M. D., and Avril, B. (2002). Seasonal and interannual dynamics of nutrients and phytoplankton pigments in thewestern Mediterranean Sea at the DYFAMED time-series station (1991–1999). Deep-sea Research. Part II, Topical Studies in Oceanography 49, 1965–1985.
Seasonal and interannual dynamics of nutrients and phytoplankton pigments in thewestern Mediterranean Sea at the DYFAMED time-series station (1991–1999).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjsl2lt7Y%3D&md5=9a15e17df1b5c08de8d406fe17446370CAS |

Modigh, M. (2001). Seasonal variations of photosynthetic ciliates at a Mediterranean coastal site. Aquatic Microbial Ecology 23, 163–175.
Seasonal variations of photosynthetic ciliates at a Mediterranean coastal site.Crossref | GoogleScholarGoogle Scholar |

Moncheva, S., Gotsis-Skretas, O., Pagou, K., and Krasteva, A. (2001). Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuarine, Coastal and Shelf Science 53, 281–295.
Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFSjtLo%3D&md5=83cfeb2c170a7411e42e6fe0cf108ca9CAS |

Navarro, G., Alvain, S., Vantrepotte, V., and Huertas, I. E. (2014). Identification of dominant phytoplankton functional types in the Mediterranean Sea based on a regionalized remote sensing approach. Remote Sensing of Environment 152, 557–575.
Identification of dominant phytoplankton functional types in the Mediterranean Sea based on a regionalized remote sensing approach.Crossref | GoogleScholarGoogle Scholar |

Nuccio, C., Melillo, C., Massi, L., and Innamorati, M. (2003). Phytoplankton abundance, community structure and diversity in eutrophycated Otbetello lagoon (Tuscany) from 1995 to 2001. Oceanologica Acta 26, 15–25.
Phytoplankton abundance, community structure and diversity in eutrophycated Otbetello lagoon (Tuscany) from 1995 to 2001.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFSisbo%3D&md5=f7353729ff1f0113bab4b0d1a34ebdf9CAS |

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L. (2006). A global crisis for seagrass ecosystems. Bioscience 56, 987–996.
A global crisis for seagrass ecosystems.Crossref | GoogleScholarGoogle Scholar |

Ota, T., and Taniguchi, A. (2003). Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration. Deep-sea Research. Part II, Topical Studies in Oceanography 50, 423–442.
Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVWntb8%3D&md5=044d6d1d1ed86d4c0f5d227bfc08ad9aCAS |

Petz, W. (1999). Ciliophora. In ‘South Atlantic Zooplankton’. (Ed. D. Boltovsky.) pp. 265–319. (Backhuys Publishers: Leiden, Netherlands.)

Pitta, P., Giannakourou, A., and Christaki, U. (2001). Planktonic ciliates in the oligotrophic Mediterranean Sea: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquatic Microbial Ecology 24, 297–311.
Planktonic ciliates in the oligotrophic Mediterranean Sea: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents.Crossref | GoogleScholarGoogle Scholar |

Rekik, A., Drira, Z., Guermazi, W., Elloumi, J., Maalej, S., Aleya, L., and Ayadi, H. (2012). Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Marine Pollution Bulletin 64, 336–346.
Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOntb4%3D&md5=5213777123ee4d01bb9819130e1ef970CAS | 22154276PubMed |

Rekik, A., Maalej, S., Ayadi, H., and Aleya, L. (2013a). Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast. Environmental Science and Pollution Research International , .
Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast.Crossref | GoogleScholarGoogle Scholar | 23149925PubMed |

Rekik, A., Denis, M., Aleya, L., Maalej, S., and Ayadi, H. (2013b). Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration. Marine Pollution Bulletin 67, 82–93.
Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKgtbfL&md5=0e26fd6c4b2940fc694568383cf15468CAS | 23260651PubMed |

Reynolds, C. S. (2006). ‘Ecology of Phytoplankton.’ (Cambridge University Press: Cambridge, UK.)

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., and Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24, 417–428.
Towards a functional classification of the freshwater phytoplankton.Crossref | GoogleScholarGoogle Scholar |

SCOR-UNESCO (1966). ‘Determination of photosynthetic pigments in sea water.’ (UNESCO: Paris.)

Shen, P. P., Tan, Y. H., Huang, L. M., Zhang, J. L., and Yin, J. Q. (2010). Occurrence of brackish water phytoplankton species at a closed coral reef in Nansha Islands, South China Sea. Marine Pollution Bulletin 60, 1718–1725.
Occurrence of brackish water phytoplankton species at a closed coral reef in Nansha Islands, South China Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Whur3N&md5=c1b6936e2b1d5d35522bf9e4c87da191CAS | 20656304PubMed |

Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., d’Alcalá Ribera, M., and Vaqué, D. (2010). Plankton in the open Mediterranean Sea: a review. Biogeosciences 7, 1543–1586.
Plankton in the open Mediterranean Sea: a review.Crossref | GoogleScholarGoogle Scholar |

Song, X., Huang, L., Zhang, J., Huang, X., Zhang, J., Yin, J., Tan, Y., and Liu, S. (2004). Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer. Marine Pollution Bulletin 49, 1036–1044.
Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSrsLfM&md5=af3998b9cb5afb47c9727d555b04a96aCAS | 15556190PubMed |

Spittler, P. (1973). Feeding experiments with tintinnids. Oikos 15, 128–132.

Strüder-Kypke, M. C., and Montagnes, D. J. S. (2002). Development of web-based guides to planktonic protists. Aquatic Microbial Ecology 27, 203–207.
Development of web-based guides to planktonic protists.Crossref | GoogleScholarGoogle Scholar |

Tomas, C. R., Hasle, G. R., Steidinger, A. K., Syvertsen, E. E., and Tangen, C. (1996). ‘Identifying marine diatoms and dinoflagellates.’ (Academic Press, Inc.: Waltham, MA.)

Tornés, E., Pérez, M. C., Durán, C., and Sabater, S. (2014). Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river. The Science of the Total Environment 475, 225–233.
Reservoirs override seasonal variability of phytoplankton communities in a regulated Mediterranean river.Crossref | GoogleScholarGoogle Scholar | 23706480PubMed |

Tregouboff, G., and Rose, M. (1957). ‘Manuel de planctonologie mediterraneenne. Volume II.’ (CNRS: Paris.)

Turki, S., Harzallah, A., and Sammari, C. (2006). Occurrence of harmful dinoflagellates in two different Tunisian ecosystems: the lake of Bizerte and the gulf of Gabes. Cahiers de Biologie Marine 47, 253–259.

Uitz, J., Huot, Y., Bruyant, F., Babin, M., and Claustre, H. (2008). Relating phytoplankton photophysiological properties to community structure on large scales. Limnology and Oceanography 53, 614–630.
Relating phytoplankton photophysiological properties to community structure on large scales.Crossref | GoogleScholarGoogle Scholar |

Utermöhl, H. (1958). Zurvervolkommungder quantitativen phytoplankton Methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte. Journal of Limnology 9, 1–38.

Vadrucci, M. R., Stanca, E., Mazziotti, C., Umani, S. F., Georgia, A., Moncheva, S., Romano, A., Bucci, R., Ungaro, N., and Basset, A. (2013). Ability of phytoplankton trait sensitivity to highlight anthropogenic pressures in Mediterranean lagoons: a size spectra sensitivity index (ISS-phyto). Ecological Indicators 34, 113–125.
Ability of phytoplankton trait sensitivity to highlight anthropogenic pressures in Mediterranean lagoons: a size spectra sensitivity index (ISS-phyto).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1aqt73E&md5=4d3765bbc3ec2d378640c3b9b680c42eCAS |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12 377–12 381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslGjsbo%3D&md5=bae82cf8331a64f6af10b2e719732fefCAS |

Wickham, S. A., Steinmair, U., and Kamennaya, N. (2011). Ciliate distributions and forcing factors in the Amundsen and Bellingshausen Seas (Antarctic). Aquatic Microbial Ecology 62, 215–230.
Ciliate distributions and forcing factors in the Amundsen and Bellingshausen Seas (Antarctic).Crossref | GoogleScholarGoogle Scholar |

Xu, H., Song, W., Warren, A., Al-Rasheid, K. A. S., Al-Farraj, S. A., Gong, J., and Hu, X. (2008). Planktonic protist communities in a semi-enclosed mariculture pond: structural variation and correlation with environmental conditions. Journal of the Marine Biological Association of the United Kingdom 88, 1353–1362.
Planktonic protist communities in a semi-enclosed mariculture pond: structural variation and correlation with environmental conditions.Crossref | GoogleScholarGoogle Scholar |

Ye, Y., Christophe Völker, C., Bracher, A., Taylor, B., Dieter, A., and Wolf-Gladrow, D. A. (2012). Environmental controls on N2 fixation by Trichodesmium in the tropical eastern North Atlantic Ocean – a model-based study. Deep-sea Research. Part I, Oceanographic Research Papers , .
Environmental controls on N2 fixation by Trichodesmium in the tropical eastern North Atlantic Ocean – a model-based study.Crossref | GoogleScholarGoogle Scholar |

Yoshiyama, K., and Klausmeier, C. A. (2008). Optimal cell size for resource uptake in fluids: a new facet of resource competition. American Naturalist 171, 59–70.
Optimal cell size for resource uptake in fluids: a new facet of resource competition.Crossref | GoogleScholarGoogle Scholar | 18171151PubMed |

Zaghden, H., Kallel, M., Louati, A., Elleuch, B., Oudot, J., and Saliot, A. (2005). Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea. Marine Pollution Bulletin 50, 1287–1294.
Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ensLrP&md5=0c62f61a994c340e9709ab31b16d06f6CAS | 15961122PubMed |

Zingel, P., Huitu, E., Mäkelä, S., and Arvola, L. (2002). The abundance and diversity of planktonic ciliates in 12 boreal lakes of varying trophic state. Archiv für Hydrobiologie 155, 315–332.