Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Widespread occurrence of coral diseases in the central Maldives

Simone Montano A B D , Giovanni Strona C , Davide Seveso A B , Davide Maggioni A B and Paolo Galli A B
+ Author Affiliations
- Author Affiliations

A Department of Biotechnologies and Biosciences, University of Milan – Bicocca, Piazza della Scienza 2, I-20126, Milan, Italy.

B Marine Research and High Education (MaRHE) Center, Magoodhoo Island, 12030, Faafu Atoll, Republic of Maldives.

C European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, I-21027 Ispra, Italy.

D Corresponding author. Email: simone.montano@unimib.it

Marine and Freshwater Research 67(8) 1253-1262 https://doi.org/10.1071/MF14373
Submitted: 19 November 2014  Accepted: 1 June 2015   Published: 4 September 2015

Abstract

Coral diseases are one of the most important causes of coral reef decline worldwide. Although they are well investigated in some areas of the Caribbean and the Great Barrier Reef, they have been poorly studied in the Indian Ocean, and particularly in the Maldives, where the presence of coral pathologies has been reported only recently. In order to fill this gap, we investigated the prevalence, local host range and distribution of five coral diseases, namely brown band disease, skeleton eroding band, black band disease (BBD), ulcerative white spot and white syndrome (WS), in the central part of the Maldivian Archipelago, focussing, in particular, on the dominant coral genus Acropora. We estimated an overall disease prevalence of approximately 1.51%. Malè North Atoll was the most affected area; however, coral diseases were present at all study sites. WS was the most widespread disease, whereas BBD affected the highest number of scleractinian genera. We found symptoms of disease on 18 genera belonging to eight families. Acropora was the most affected genus in terms of pathogen diversity. These results provide baseline disease levels for the Maldives and can therefore serve as gauge for monitoring future change.

Additional keywords: Acropora, disease prevalence, host specificity, local host range.


References

Aeby, G. S. (2005). Outbreak of coral disease in the Northwestern Hawaiian Islands. Coral Reefs 24, 481–484.
Outbreak of coral disease in the Northwestern Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |

Alker, A. P., Smith, G. W., and Kim, K. (2001). Characterization of Aspergillus sydowii (Thom et Church) a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460, 105–111.
Characterization of Aspergillus sydowii (Thom et Church) a fungal pathogen of Caribbean sea fan corals.Crossref | GoogleScholarGoogle Scholar |

Arthur, R., Done, T. J., Marsh, H., and Harriott, V. (2006). Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep Islands. Coral Reefs 25, 427–440.
Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep Islands.Crossref | GoogleScholarGoogle Scholar |

Baker, D. M., MacAvoy, S. E., and Kim, K. (2007). The relationship between water quality, D15 N, and aspergillosis of Caribbean sea fan corals. Marine Ecology Progress Series 343, 123–130.
The relationship between water quality, D15 N, and aspergillosis of Caribbean sea fan corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyrs7%2FF&md5=41456ae548dedd131d9adf76aafa6569CAS |

Barash, Y., Sulam, R., Loya, Y., and Rosenberg, E. (2005). Bacterial strain BA-3 and a filterable factor cause a white plague-like disease in corals from the Eilat coral reef. Aquatic Microbial Ecology 40, 183–189.
Bacterial strain BA-3 and a filterable factor cause a white plague-like disease in corals from the Eilat coral reef.Crossref | GoogleScholarGoogle Scholar |

Beeden, R., Willis, B. L., Raymundo, L. J., Page, C. A., and Weil, E. (2008). ‘Underwater Cards for Assessing Coral Health on Indo-Pacific Reefs. Coral Reef Targeted Research and Capacity Building for Management Program.’ (Currie Communications: Melbourne.)

Ben-Haim, Y., Zicherman-Keren, M., and Rosenberg, E. (2003). Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Applied and Environmental Microbiology 69, 4236–4242.
Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFansr8%3D&md5=21d56b21c66f978e6fcdae95d3984d0aCAS | 12839805PubMed |

Bessat, F., and Buigues, D. (2001). Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean–atmosphere variability from south central Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 175, 381–392.
Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean–atmosphere variability from south central Pacific.Crossref | GoogleScholarGoogle Scholar |

Bianchi, C. N., Morri, C., Pichon, M., Benzoni, F., Colantoni, P., Baldelli, G., and Sandrini, M. (2006). Dynamics and pattern of coral recolonization following the 1998 bleaching event in the reefs of the Maldives. Proceeding 10th International Coral Reef Symposium 1, 30–37.

Bruno, J. F., and Selig, E. R. (2007). Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2, e711.
Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons.Crossref | GoogleScholarGoogle Scholar | 17684557PubMed |

Bruno, J. F., Petes, L. E., Harvell, C. D., and Hettinger, A. (2003). Nutrient enrichment can increase the severity of coral diseases. Ecology Letters 6, 1056–1061.
Nutrient enrichment can increase the severity of coral diseases.Crossref | GoogleScholarGoogle Scholar |

Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A., Willis, B. L., Harvell, C. D., Sweatman, H., and Melendy, A. M. (2007). Thermal stress and coral cover as drivers of coral disease outbreak. PLoS Biology 5, e124.
Thermal stress and coral cover as drivers of coral disease outbreak.Crossref | GoogleScholarGoogle Scholar | 17488183PubMed |

Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., Chiriboga, A., Cortes, J., Delbeek, J. C., DeVantier, L., Edgar, G. J., Edwards, A. J., Fenner, D., Guzman, H. M., Hoeksema, B. W., Hodson, G., Johan, O., Licuanan, W. Y., Livingston, S. R., Lovell, E. R., Moore, J. A., Obura, D. O., Ochavillo, D., Polidoro, B. A., Precht, W. F., Quibilan, M. C., Reboton, C., Richards, Z. T., Rogers, A. D., Sanciangco, J., Sheppard, A., Sheppard, C., Smith, J., Stuart, S., Turak, E., Veron, J. E. N., Wallace, C., Weil, E., and Wood, E. (2008). One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563.
One-third of reef-building corals face elevated extinction risk from climate change and local impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGhtrY%3D&md5=50b58c798d8bb238a1e2d60db6c99037CAS | 18653892PubMed |

Ciarapica, G., and Passeri, L. (1999). Coral bleaching in the Maldives (Ari Atoll). Reef Encounter 26, 19–21.

Danovaro, R., Bongiorni, L., Corinaldesi, C., Giovannelli, E., Damiani, D., Astolfi, P., Greci, L., and Pusceddu, A. (2008). Sunscreens cause coral bleaching by promoting viral infections. Environmental Health Perspectives 116, 441–447.
| 1:CAS:528:DC%2BD1cXltlSks7c%3D&md5=fa33b57a197891508f9f56ca3a7fbe22CAS | 18414624PubMed |

Edwards, A. J., Clark, S., Zahir, H., Rajasuriya, A., Naseer, A., and Rubens, J. (2001). Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery. Marine Pollution Bulletin 42, 7–15.
Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlWnt7s%3D&md5=a641de50f7019d0f4492e55892250d77CAS | 11382986PubMed |

Fine, M., Oren, U., and Loya, Y. (2002). Bleaching effect on regeneration and resource traslocation in the coral Oculina patagonica. Marine Ecology Progress Series 234, 119–125.
Bleaching effect on regeneration and resource traslocation in the coral Oculina patagonica.Crossref | GoogleScholarGoogle Scholar |

Goreau, T. J., Cervino, J., Goreau, M., Hayes, R., Hayes, M., Richardson, L., Smith, G., DeMeyer, K., Nagelkerken, I., Garzon-Ferrera, J., Gil, D., Garrison, G., Williams, E. H., Bunkley-Williams, L., Quirolo, C., Patterson, K., Porter, J. W., and Porter, K. (1998). Rapid spread of diseases in Caribbean coral reefs. Revista de Biologia Tropical 46, 157–171.

Goreau, T., McClanahan, T., Hayes, R., and Strong, A. (2000). Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology 14, 5–15.
Conservation of coral reefs after the 1998 global bleaching event.Crossref | GoogleScholarGoogle Scholar |

Green, E. P., and Bruckner, A. W. (2000). The significance of coral disease epizootiology for coral reef conservation. Biological Conservation 96, 347–361.
The significance of coral disease epizootiology for coral reef conservation.Crossref | GoogleScholarGoogle Scholar |

Grottoli, A. G., Rodrigues, L. J., and Juarez, C. (2004). Lipids and stable carbon isotope in two species of Hawaiian corals Porties compressa and Montipora verrucosa, following a bleaching event. Marine Biology 145, 621–631.
Lipids and stable carbon isotope in two species of Hawaiian corals Porties compressa and Montipora verrucosa, following a bleaching event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Glur0%3D&md5=58c5d6a13a27cf75d6f6f8c6ccfd019dCAS |

Haapkylä, J., Seymour, A. S., Trebilco, J., and Smith, D. (2007). Coral disease prevalence and coral health in the Wakatobi Marine Park, South-East Sulawesi Indonesia. Journal of the Marine Biological Association of the United Kingdom 87, 403–414.
Coral disease prevalence and coral health in the Wakatobi Marine Park, South-East Sulawesi Indonesia.Crossref | GoogleScholarGoogle Scholar |

Haapkylä, J., Melbourne-Thomas, J., Flavell, M., and Willis, B. L. (2010). Spatiotemporal patterns of coral disease prevalence on Heron Island, Great Barrier Reef, Australia. Coral Reefs 29, 1035–1045.
Spatiotemporal patterns of coral disease prevalence on Heron Island, Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Haapkylä, J., Melbourbe-Thomas, J., Flavell, M., and Willis, B. L. (2013). Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef. Coral Reefs 32, 815–824.
Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Harvell, C. D., Kim, K., Burkholder, J. M., Colwell, R. R., Epstein, P. R., Grimes, D. J., Hofmann, E. E., Lipp, E. K., Osterhaus, A. D. M. E., Overstreet, R. M., Porter, J. W., Smith, G. W., and Vasta, G. R. (1999). Emerging marine diseases-climate links and anthropogenic factors. Science 285, 1505–1510.
Emerging marine diseases-climate links and anthropogenic factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslOktro%3D&md5=2be9e7ef59a36650add3c8229b680275CAS | 10498537PubMed |

Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., and Samuel, M. D. (2002). Climate warming and disease risk for terrestrial and marine biota. Science 296, 2158–2162.
Climate warming and disease risk for terrestrial and marine biota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsLo%3D&md5=ce1370e7d22320aed3bbf274bb21653aCAS | 12077394PubMed |

Harvell, C. D., Markel, S., Jordán-Dahlgren, E., Merkel, S., Rosemberg, E., Raymundo, L., Smith, G., Weil, E., and Willis, B. (2007). Coral disease, environmental driver and the balance between coral and microbial associates. Oceanography (Washington, D.C.) 20, 172–195.
Coral disease, environmental driver and the balance between coral and microbial associates.Crossref | GoogleScholarGoogle Scholar |

Harvell, C. D., Altize, S. R., Cattadori, I. M., Harrington, L., and Weil, E. (2009). Climate change and wildlife diseases: when does the host matter the most? Ecology 90, 912–920.
Climate change and wildlife diseases: when does the host matter the most?Crossref | GoogleScholarGoogle Scholar |

Hobbs, J. P. A., and Frisch, A. J. (2010). Coral disease in the Indian Ocean: taxonomic susceptibility, spatial distribution and the role of host density on the prevalence of white syndrome. Diseases of Aquatic Organisms 89, 1–8.
Coral disease in the Indian Ocean: taxonomic susceptibility, spatial distribution and the role of host density on the prevalence of white syndrome.Crossref | GoogleScholarGoogle Scholar |

Hoegh-Guldberg, O., Mumby, P. J., and Hooten, A. J. (2007). Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742.
Coral reefs under rapid climate change and ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhu7fN&md5=e3ee8b6f43e3553ff7e23b2196c4f671CAS | 18079392PubMed |

Irikawa, A., Casareto, B. E., Suzuki, Y., Aagostini, S., Hidaka, M., and van Woesik, R. (2011). Growth anomalies on Acropora cytherea corals. Marine Pollution Bulletin 62, 1702–1707.
Growth anomalies on Acropora cytherea corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKrtbo%3D&md5=b23b56a8eafe4af8f3e39d57e6903f25CAS | 21704344PubMed |

Kaczmarsky, L., Draud, M., and Williams, E. H. (2005). Is there a relationship between proximity to sewage effluent and the prevalence of coral disease? Caribbean Journal of Science 41, 124–137.

Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Langdon, C., and Opdyke, B. N. (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120.
Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlCntL4%3D&md5=988e2b72e238e66fe7efc86aafbb37a8CAS | 10102806PubMed |

Kline, D. I., Kuntz, N. M., Breitbart, M., Knowlton, N., and Rohwer, F. (2006). Role of elevated organic carbon levels and microbial activity in coral mortality. Marine Ecology Progress Series 314, 119–125.
Role of elevated organic carbon levels and microbial activity in coral mortality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kis70%3D&md5=4b91e48f524542b23f8c30f2b175e078CAS |

Kuntz, N. M., Kline, D. I., Sandin, S. A., and Rohwer, F. (2005). Pathologies and mortality rates caused by organic carbon and nutrient stressors in three Caribbean coral species. Marine Ecology Progress Series 294, 173–180.
Pathologies and mortality rates caused by organic carbon and nutrient stressors in three Caribbean coral species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVenu7rP&md5=1dd954aca5c7cfa4bc3eb12b60e99f80CAS |

Kuta, K. J., and Richardson, L. L. (2002). Ecological aspects of black band disease of corals: relationships between disease incidence and environmental factors. Coral Reefs 21, 393–398.

Longo, C., De Mandato, P., Piscitelli, M., and Corriero, G. (2000). Osservazioni preliminari sulla mortalità di madreporari ermaticipici nell’Arcipelago delle Maldive. Biologia Marina Mediterranea 7, 686–690.

Marshall, P. A., and Baird, A. H. (2000). Bleaching of corals on the Great Barrier Reef: differential susceptibility among taxa. Coral Reefs 19, 155–163.
Bleaching of corals on the Great Barrier Reef: differential susceptibility among taxa.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R. (2004). The relationship between bleaching and mortality of common corals. Marine Biology 144, 1239–1245.
The relationship between bleaching and mortality of common corals.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R., McLaughlin, S. M., Davy, J. E., Wilson, W. H., Peters, E. C., Price, K. L., and Maina, J. (2004). Observation of a new source of coral mortality along the Kenyan coast. Hydrobiologia 530–531, 469–479.
Observation of a new source of coral mortality along the Kenyan coast.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R., and Muthiga, N. A. (2014). Community change and evidence of variable warm-water temperature adaption of corals in Nothern male Atoll, Maldives. Marine Pollution Bulletin 80, 107–113.
Community change and evidence of variable warm-water temperature adaption of corals in Nothern male Atoll, Maldives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs12is7s%3D&md5=564d8a9d7ebc108b7ee4180de69f392fCAS | 24486038PubMed |

Meesters, E. H., and Bak, R. P. M. (1993). Effects of coral bleaching on tissue regeneration potential and colony survival. Marine Ecology Progress Series 96, 189–198.
Effects of coral bleaching on tissue regeneration potential and colony survival.Crossref | GoogleScholarGoogle Scholar |

Miller, A. W., and Richardson, L. L. (2014). Emerging coral diseases: a temperature-driven process? Marine Ecology (Berlin) , .

Montano, S., Strona, G., Seveso, D., and Galli, P. (2012). First report of coral diseases in the Republic of Maldives. Diseases of Aquatic Organisms 101, 159–165.
First report of coral diseases in the Republic of Maldives.Crossref | GoogleScholarGoogle Scholar | 23135143PubMed |

Montano, S., Strona, G., Seveso, D., and Galli, P. (2013). Prevalence, host range, and spatial distribution of black band disease in the Maldivian Archipelago. Diseases of Aquatic Organisms 105, 65–74.
Prevalence, host range, and spatial distribution of black band disease in the Maldivian Archipelago.Crossref | GoogleScholarGoogle Scholar | 23836771PubMed |

Montano, S., Strona, G., Seveso, D., Maggioni, D., and Galli, P. (2014). Slow progression of black band disease in Goniopora cf. columna colonies may promote its persistence in a coral community. Marine Biodiversity , .
Slow progression of black band disease in Goniopora cf. columna colonies may promote its persistence in a coral community.Crossref | GoogleScholarGoogle Scholar |

Montano, S., Chou, W. H., Chen, C. A., Galli, P., and Reimer, J. D. (2015). First record of the coral-killing sponge Terpios hoshinota in the Maldives and Indian Ocean. Bulletin of Marine Science , .
First record of the coral-killing sponge Terpios hoshinota in the Maldives and Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Myers, R. L., and Raymundo, L. J. (2009). Coral disease in Micronesian reefs: a link between disease prevalence and host abundance. Diseases of Aquatic Organisms 87, 97–104.
Coral disease in Micronesian reefs: a link between disease prevalence and host abundance.Crossref | GoogleScholarGoogle Scholar | 20095245PubMed |

Mydlarz, L. D., Couch, C. S., Weil, E., Smith, G., and Harvell, C. D. (2009). Immune defense of healthy, bleached and diseased Montastrea faveolata during a natural bleaching event. Diseases of Aquatic Organisms 87, 67–78.
Immune defense of healthy, bleached and diseased Montastrea faveolata during a natural bleaching event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVaiug%3D%3D&md5=02ab9b94700e13b914c633c0ec79e00fCAS | 20095242PubMed |

Mydlarz, L. D., McGinty, S. E., and Harvell, C. D. (2010). What are the physiological and immunological response of coral to climate warming and disease. The Journal of Experimental Biology 213, 934–945.
What are the physiological and immunological response of coral to climate warming and disease.Crossref | GoogleScholarGoogle Scholar | 20190118PubMed |

Nicolet, K. J., Hoogenboom, M. O., Gardiner, N. M., Pratchett, M. S., and Willis, B. L. (2013). The corallivorous invertebrate Drupella aids in transmission of brown band disease on the Great Barrier Reef. Coral Reefs 32, 585–595.
The corallivorous invertebrate Drupella aids in transmission of brown band disease on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Owen, R., Knap, A. H., Toaspern, M., and Carbery, K. (2002). Inhibition of coral photosynthesis by the antifouling herbicide Irgarol 1051®. Marine Pollution Bulletin 44, 623–632.
Inhibition of coral photosynthesis by the antifouling herbicide Irgarol 1051®.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVKgt7k%3D&md5=74b1edaec6f8f856b377cf394b38803cCAS | 12222885PubMed |

Page, C. A., and Willis, B. L. (2008). Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 27, 257–272.
Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease.Crossref | GoogleScholarGoogle Scholar |

Palmer, V. C., Myldzard, L. D., and Willis, B. L. (2008). Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. Proceedings of the Royal Society – B. Biological Sciences 275, 2687–2693.
Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals.Crossref | GoogleScholarGoogle Scholar |

Palmer, V. C., Bythell, J. C., and Willis, B. L. (2010). Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. The FASEB Journal 24, 1935–1946.
Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Oisr8%3D&md5=c964d55e18b124359f8d91eee0be2b37CAS |

Palmer, V. C., McGinty, S. E., Cummings, D. J., Smith, S. M., Bartels, E., and Myldzard, L. D. (2011). Pattern of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. The Journal of Experimental Biology 214, 4240–4249.
Pattern of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Cgsbs%3D&md5=be88ed85889e8158bdee00b350422cf8CAS |

Pandolfi, J. M., Jackson, J. B. C., Baron, N., Bradbury, R. H., Guzman, H. M., Hughes, T. P., Kappel, C. V., Micheli, F., Ogden, J. C., Possingham, H. P., and Sala, E. (2005). Are U.S. coral reefs on the slippery slope to slime? Science 307, 1725–1726.
Are U.S. coral reefs on the slippery slope to slime?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVyrsL0%3D&md5=c57ccf44fb9148659fca0dcffcbc6777CAS | 15774744PubMed |

Pichon, M., and Benzoni, F. (2007). Taxonomic re-appraisal of zooxanthellate Scleractinian corals in the Maldive Archipelago. Zootaxa 1441, 21–33.

Raymundo, L. J., Rosell, K. B., Reboton, C. T., and Karczmarsky, L. T. (2005). Coral diseases on Philippine reefs: genus Porites is a dominant host. Diseases of Aquatic Organisms 64, 181–191.
Coral diseases on Philippine reefs: genus Porites is a dominant host.Crossref | GoogleScholarGoogle Scholar | 15997816PubMed |

Riegl, B. M., Bruckner, A. W., Samimi-Namin, K., and Purkis, S. J. (2012). Diseases, harmful algae blooms (HABs) and their effects on Gulf coral populations and communities. In ‘Coral Reefs of the Gulf’. (Eds B. M. Riegl and S. J. Purkis.) pp. 107–125. (Springer: Dordrecht, Netherlands.)

Roff, G., Kvennefors, E. C. E., Fine, M., Ortiz, J., Davy, J. E., and Hoegh-Guldberg, O. (2011). The ecology of ‘acroporid white syndrome’, a coral disease from the southern Great Barrier Reef. PLoS One 6, e26829.
The ecology of ‘acroporid white syndrome’, a coral disease from the southern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Khu7vE&md5=e6e6e293b8dcfd29938062b85041328dCAS | 22163267PubMed |

Ruiz-Moreno, D., Willis, B. L., Page, A. C., Weil, E., Cróquer, A., Vargas-Angel, B., Garza, A. G. J., Dahlgren, E. J., Raymundo, L., and Harvell, C. D. (2012). Global coral disease prevalence associated with sea temperature anomalies and local factors. Diseases of Aquatic Organisms 100, 249–261.
Global coral disease prevalence associated with sea temperature anomalies and local factors.Crossref | GoogleScholarGoogle Scholar | 22968792PubMed |

Sekar, R., Kaczmarsky, L. T., and Richardson, L. L. (2008). Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Marine Ecology Progress Series 362, 85–98.
Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Ols7c%3D&md5=a63e60830e2911e71d225161e6895509CAS |

Séré, M. G., Schleyer, M. H., Quod, J.-P., and Chabanet, P. C. R. (2012). Porites white patch syndrome: an unreported coral disease on western Indian Ocean reefs. Coral Reefs 31, 739.
Porites white patch syndrome: an unreported coral disease on western Indian Ocean reefs.Crossref | GoogleScholarGoogle Scholar |

Séré, M. G., Tortosa, P., Chabanet, P., Turquet, J., Quod, J.-P., and Schleyer, M. H. (2013). Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs. PLoS One 8, e83746.
Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.Crossref | GoogleScholarGoogle Scholar | 24391819PubMed |

Seveso, D., Montano, S., Strona, G., Orlandi, I., Vai, M., and Galli, P. (2012). Up-regulation of Hsp60 in response to skeleton eroding band disease but not by algal overgrowth in the scleractinian coral Acropora muricata. Marine Environmental Research 78, 34–39.
Up-regulation of Hsp60 in response to skeleton eroding band disease but not by algal overgrowth in the scleractinian coral Acropora muricata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVarsbs%3D&md5=70619d747afe4cad2970ab17116e2048CAS | 22552233PubMed |

Seveso, D., Montano, S., Reggente, M., Orlandi, I., Galli, P., and Vai, M. (2015). Modulation of Hsp60 in response to coral brown band disease. Diseases of Aquatic Organisms 115, 15–23.
Modulation of Hsp60 in response to coral brown band disease.Crossref | GoogleScholarGoogle Scholar | 26119296PubMed |

Sheppard, C. R. C., Harris, A., and Sheppard, A. L. S. (2008). Archipelago-wide coral recovery patterns since 1998 in the Chagos Archipelago, central Indian Ocean. Marine Ecology Progress Series 362, 109–117.
Archipelago-wide coral recovery patterns since 1998 in the Chagos Archipelago, central Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Spalding, M., Ravilious, C., and Green, E. P. (2001). ‘World Atlas of Coral Reefs.’ (University of California Press: Berkeley, CA.)

Sutherland, K. P., Porter, J. W., and Torres, C. (2004). Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine Ecology Progress Series 266, 273–302.
Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals.Crossref | GoogleScholarGoogle Scholar |

Sutherland, W. J., Clout, M., Depledge, M., Dicks, L. V., Dinsdale, J., Entwistle, A. C., Fleishman, E., Gibbons, D. W., Keim, B., Lickorish, F. A., Monk, K. A., Ockendon, N., Peck, L. S., Pretty, J., Rockström, J., Spalding, M. D., Tonneijck, F. H., and Wintle, B. C. (2015). A horizon scan of global conservation issues for 2015. Trend in Ecology & Evolution 30, 17–24.
A horizon scan of global conservation issues for 2015.Crossref | GoogleScholarGoogle Scholar |

Tkachenko, K. S. (2012). The northernmost coral frontier of the Maldives: the coral reefs of Ihavandippolu Atoll under long-term environmental change. Marine Environmental Research 82, 40–48.
The northernmost coral frontier of the Maldives: the coral reefs of Ihavandippolu Atoll under long-term environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gru7vJ&md5=8446eee337b613691ac0d536daca71e9CAS | 23063708PubMed |

Tkachenko, K. S. (2014a). Impact of repetitive thermal anomalies on survival and development of mass reef‐building corals in the Maldives. Marine Ecology (Berlin) , .
Impact of repetitive thermal anomalies on survival and development of mass reef‐building corals in the Maldives.Crossref | GoogleScholarGoogle Scholar |

Tkachenko, K. S. (2014b). The influence of repetitive thermal stresses on the dominance of reef-building Acropora spp. (Scelractinia) on coral reefs of the Maldive Islands. Russian Journal of Marine Biology 40, 286–294.
The influence of repetitive thermal stresses on the dominance of reef-building Acropora spp. (Scelractinia) on coral reefs of the Maldive Islands.Crossref | GoogleScholarGoogle Scholar |

Veron, J. E. N. (Ed.) (2000). ‘Corals of the World.’ (Australian Institute of Marine Science: Townsville, Qld.)

Voss, J. D., and Richardson, L. L. (2006). Nutrient enrichment enhances black band disease progression in corals. Coral Reefs 25, 569–576.
Nutrient enrichment enhances black band disease progression in corals.Crossref | GoogleScholarGoogle Scholar |

Ward, J. R., and Lafferty, K. D. (2004). The elusive baseline of marine disease: are diseases in ocean ecosystems increasing? PLoS Biology 2, e120.
The elusive baseline of marine disease: are diseases in ocean ecosystems increasing?Crossref | GoogleScholarGoogle Scholar | 15094816PubMed |

Weil, E. (2004). Coral reef disease in the wider Caribbean: status and prognosis. In ‘Coral Health And Disease’. (Eds E. Rosenberg and Y. Loya.) pp. 35–64. (Springer: Berlin.)

Weil, E., and Cróquer, A. (2009). Spatial variability in distribution and prevalence of Caribbean scleractinian coral and octocoral diseases. I. Community-level analysis. Diseases of Aquatic Organisms 83, 195–208.
Spatial variability in distribution and prevalence of Caribbean scleractinian coral and octocoral diseases. I. Community-level analysis.Crossref | GoogleScholarGoogle Scholar | 19402453PubMed |

Weil, E., Irikawa, A., Casareto, B., and Suzuky, Y. (2012). Extendend geographic distribution of several Indo-Pacific coral diseases. Diseases of Aquatic Organisms 98, 163–170.
Extendend geographic distribution of several Indo-Pacific coral diseases.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38votlylsg%3D%3D&md5=8604e73c72294c2f38aeb14a25564974CAS | 22436464PubMed |

Wilkinson, C., Linden, O., Cesar, H., Hodgson, G., Rubens, J., and Strong, A. E. (1999). Ecological and socioeconomic impact of 1998 coral mortality in the Indian Ocean: an ENSO and a warning of future change? Ambio 28, 188–199.

Williams, G. J., Knapp, I. S., Work, T. M., and Conklin, E. J. (2011). Outbreak of Acropora white syndrome following a mild bleaching event at Palmyra Atoll, Northern Line Islands Central Pacific. Coral Reefs 30, 621.
Outbreak of Acropora white syndrome following a mild bleaching event at Palmyra Atoll, Northern Line Islands Central Pacific.Crossref | GoogleScholarGoogle Scholar |

Willis, B. L., Page, C. A., and Dindsdale, E. A. (2004). Coral disease in the Great Barrier Reef. In ‘Coral Health and Disease’. (Eds E. Rosenberg and Y. Loya.) pp. 69–104. (Springer: Berlin.)

Zahir, H. (2000). Status of the coral reefs of Maldives after the bleaching event in 1998. In ‘Coral Reef Degradation in the Indian Ocean’. (Eds D. Souter, D. Obura and O. Lindèn.) pp. 64–68. (CORDIO: Stockholm.)

Zar, J. H. (1999). ‘Biostatistical Analysis.’ (Prentice-Hall: London.)