Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Human impacts on connectivity in marine and freshwater ecosystems assessed using graph theory: a review

Megan I. Saunders A J , Christopher J. Brown A , Melissa M. Foley B H , Catherine M. Febria C , Rebecca Albright D I , Molly G. Mehling E , Maria T. Kavanaugh F and Dana D. Burfeind G
+ Author Affiliations
- Author Affiliations

A The Global Change Institute, The University of Queensland, St Lucia, Qld 4072, Australia;

B Center for Ocean Solutions, Stanford University, Monterey, CA 93940, USA.

C School of Biological Sciences, University of Canterbury – Te Whare Wnanga o Waitaha, Christchurch, 4800, New Zealand.

D Australian Institute of Marine Science, Townsville MC, Townsville, Qld 4810, Australia.

E Falk School of Sustainability, 1 Woodland Road, Chatham University, Pittsburgh, PA 15232, USA.

F Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA.

G The School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072, Australia.

H Present address: United States Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060, USA.

I Present address: Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.

J Corresponding author. Email: m.saunders1@uq.edu.au

Marine and Freshwater Research 67(3) 277-290 https://doi.org/10.1071/MF14358
Submitted: 11 November 2014  Accepted: 20 February 2015   Published: 6 July 2015

Abstract

Human activities are altering the processes that connect organisms within and among habitats and populations in marine and freshwater (aquatic) ecosystems. Connectivity can be quantified using graph theory, where habitats or populations are represented by ‘nodes’ and dispersal is represented by ‘links’. This approach spans discipline and systemic divides, facilitating identification of generalities in human impacts. We conducted a review of studies that have used graph theory to quantify spatial functional connectivity in aquatic ecosystems. The search identified 42 studies published in 2000–14. We assessed whether each study quantified the impacts of (1) habitat alteration (loss, alteration to links, and gain), (2) human movements causing species introductions, (3) overharvesting and (4) climate change (warming temperatures, altered circulation or hydrology, sea-level rise) and ocean acidification. In freshwater systems habitat alteration was the most commonly studied stressor, whereas in marine systems overharvesting, in terms of larval dispersal among protected areas, was most commonly addressed. Few studies have directly assessed effects of climate change, suggesting an important area of future research. Graph representations of connectivity revealed similarities across different impacts and systems, suggesting common strategies for conservation management. We suggest future research directions for studies of aquatic connectivity to inform conservation management of aquatic ecosystems.

Additional keywords: anthropogenic stressors, aquatic ecosystems, ecological networks, functional connectivity, landscape connectivity, metapopulation dynamics.


References

Adams, T., Black, K., MacIntyre, C., MacIntyre, I., and Dean, R. (2012). Connectivity modelling and network analysis of sea lice infection in Loch Fyne, west coast of Scotland. Aquaculture Environment Interactions 3, 51–63.
Connectivity modelling and network analysis of sea lice infection in Loch Fyne, west coast of Scotland.Crossref | GoogleScholarGoogle Scholar |

Allan, J. D., Abell, R., Hogan, Z., Revenga, C., Taylor, B. W., Welcomme, R. L., and Winemiller, K. (2005). Overfishing of inland waters. Bioscience 55, 1041–1051.
Overfishing of inland waters.Crossref | GoogleScholarGoogle Scholar |

Anadón, J. D., del Mar Mancha-Cisneros, M., Best, B. D., and Gerber, L. R. (2013). Habitat-specific larval dispersal and marine connectivity: implications for spatial conservation planning. Ecosphere 4, art82.
Habitat-specific larval dispersal and marine connectivity: implications for spatial conservation planning.Crossref | GoogleScholarGoogle Scholar |

Andersson, A. J., Mackenzie, F. T., and Gattuso, J.-P. (2011). Effects of ocean acidification on benthic processes, organisms, and ecosystems. In ‘Ocean Acidification’. (Eds J.-P. Gattuso and L. Hansson.) pp. 122–150. (Oxford University Press Inc.: New York.)

Andrello, M., Mouillot, D., Beuvier, J., Albouy, C., Thuiller, W., and Manel, S. (2013). Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus. PLoS ONE 8, e68564.
Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOmt7rN&md5=3460968a67e2a6701062d84aa157df3fCAS | 23861917PubMed |

Bascompte, J. (2009). Disentangling the web of life. Science 325, 416–419.
Disentangling the web of life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVCht7s%3D&md5=ea9878057555c00c7102530be4a71c68CAS | 19628856PubMed |

Bascompte, J., and Jordano, P. (2007). Plant–animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology Evolution and Systematics 38, 567–593.
Plant–animal mutualistic networks: the architecture of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Block, B., Jonsen, I., Jorgensen, S., Winship, A., Shaffer, S., Bograd, S., Hazen, E., Foley, D., Breed, G., and Harrison, A. L. (2011). Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90.
Tracking apex marine predator movements in a dynamic ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVekur4%3D&md5=2bc8ded4726f0fc5b19716cc1f26ccf3CAS | 21697831PubMed |

Borrett, S. R., Moody, J., and Edelmann, A. (2014). The rise of Network Ecology: maps of the topic diversity and scientific collaboration. Ecological Modelling 293, 111–127.
The rise of Network Ecology: maps of the topic diversity and scientific collaboration.Crossref | GoogleScholarGoogle Scholar |

Brooks, R. T. (2009). Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States. Climatic Change 95, 469–483.
Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States.Crossref | GoogleScholarGoogle Scholar |

Brown, C., Saunders, M., Possingham, H., and Richardson, A. (2014). Interactions between global and local stresses of ecosystems determine management effectiveness in cumulative impact mapping. Diversity & Distributions 20, 538–546.
Interactions between global and local stresses of ecosystems determine management effectiveness in cumulative impact mapping.Crossref | GoogleScholarGoogle Scholar |

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. (2004). Toward a metabolic theory of ecology. Ecology 85, 1771–1789.
Toward a metabolic theory of ecology.Crossref | GoogleScholarGoogle Scholar |

Calabrese, J. M., and Fagan, W. F. (2004). A comparison-shopper’s guide to connectivity metrics. Frontiers in Ecology and the Environment 2, 529–536.
A comparison-shopper’s guide to connectivity metrics.Crossref | GoogleScholarGoogle Scholar |

Campbell Grant, E. H., Lowe, W. H., and Fagan, W. F. (2007). Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters 10, 165–175.
Living in the branches: population dynamics and ecological processes in dendritic networks.Crossref | GoogleScholarGoogle Scholar | 17257104PubMed |

Cantwell, M. D., and Forman, R. T. T. (1993). Landscape graphs – ecological modeling with graph-theory to detect configurations common to diverse landscapes. Landscape Ecology 8, 239–255.
Landscape graphs – ecological modeling with graph-theory to detect configurations common to diverse landscapes.Crossref | GoogleScholarGoogle Scholar |

Carr, M. H., Neigel, J. E., Estes, J. A., Andelman, S., Warner, R. R., and Largier, J. L. (2003). Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves. Ecological Applications 13, 90–107.
Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves.Crossref | GoogleScholarGoogle Scholar |

Carranza, M. L., D’Alessandro, E., Saura, S., and Loy, A. (2012). Connectivity providers for semi-aquatic vertebrates: the case of the endangered otter in Italy. Landscape Ecology 27, 281–290.
Connectivity providers for semi-aquatic vertebrates: the case of the endangered otter in Italy.Crossref | GoogleScholarGoogle Scholar |

Chadès, I., Martin, T. G., Nicol, S., Burgman, M. A., Possingham, H. P., and Buckley, Y. M. (2011). General rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of the National Academy of Sciences of the United States of America 108, 8323–8328.
General rules for managing and surveying networks of pests, diseases, and endangered species.Crossref | GoogleScholarGoogle Scholar | 21536884PubMed |

Cote, D., Kehler, D. G., Bourne, C., and Wiersma, Y. F. (2009). A new measure of longitudinal connectivity for stream networks. Landscape Ecology 24, 101–113.
A new measure of longitudinal connectivity for stream networks.Crossref | GoogleScholarGoogle Scholar |

Cowen, R. K., and Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443–466.
Larval dispersal and marine population connectivity.Crossref | GoogleScholarGoogle Scholar | 21141044PubMed |

Cowen, R. K., Paris, C. B., and Srinivasan, A. (2006). Scaling of connectivity in marine populations. Science 311, 522–527.
Scaling of connectivity in marine populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVymtg%3D%3D&md5=d3ea9584e37039b015647eabf7ffb45eCAS | 16357224PubMed |

Cowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R., and Werner, F. E. (2007). Population connectivity in marine systems: an overview. Oceanography (Washington, D.C.) 20, 14–21.
Population connectivity in marine systems: an overview.Crossref | GoogleScholarGoogle Scholar |

Decout, S., Manel, S., Miaud, C., and Luque, S. (2012). Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landscape Ecology 27, 267–279.
Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes.Crossref | GoogleScholarGoogle Scholar |

Drake, J. M., and Lodge, D. M. (2004). Global hot spots of biological invasions: evaluating options for ballast–water management. Proceedings of the Royal Society of London – B. Biological Sciences 271, 575–580.
Global hot spots of biological invasions: evaluating options for ballast–water management.Crossref | GoogleScholarGoogle Scholar |

Elmore, A. J., and Kaushal, S. S. (2008). Disappearing headwaters: patterns of stream burial due to urbanization. Frontiers in Ecology and the Environment 6, 308–312.
Disappearing headwaters: patterns of stream burial due to urbanization.Crossref | GoogleScholarGoogle Scholar |

Erős, T., Schmera, D., and Schick, R. S. (2011). Network thinking in riverscape conservation – a graph-based approach. Biological Conservation 144, 184–192.
Network thinking in riverscape conservation – a graph-based approach.Crossref | GoogleScholarGoogle Scholar |

Erős, T., Olden, J. D., Schick, R. S., Schmera, D., and Fortin, M. J. (2012). Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecology 27, 303–317.
Characterizing connectivity relationships in freshwaters using patch-based graphs.Crossref | GoogleScholarGoogle Scholar |

Estrada, E., and Bodin, Ö. (2008). Using network centrality measures to manage landscape connectivity. Ecological Applications 18, 1810–1825.
Using network centrality measures to manage landscape connectivity.Crossref | GoogleScholarGoogle Scholar | 18839774PubMed |

Fish, M. R., Côté, I. M., Gill, J. A., Jones, A. P., Renshoff, S., and Watkinson, A. R. (2005). Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat. Conservation Biology 19, 482–491.
Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat.Crossref | GoogleScholarGoogle Scholar |

Fortuna, M. A., Gómez-Rodríguez, C., and Bascompte, J. (2006). Spatial network structure and amphibian persistence in stochastic environments. Proceedings of the Royal Society of London – B. Biological Sciences 273, 1429–1434.
Spatial network structure and amphibian persistence in stochastic environments.Crossref | GoogleScholarGoogle Scholar |

Fox, R. J., and Bellwood, D. R. (2014). Herbivores in a small world: network theory highlights vulnerability in the function of herbivory on coral reefs. Functional Ecology 28, 642–651.
Herbivores in a small world: network theory highlights vulnerability in the function of herbivory on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Fullerton, A. H., Lindley, S. T., Pess, G. R., Feist, B. E., Steel, E. A., and McElhany, P. (2011). Human influence on the spatial structure of threatened Pacific salmon metapopulations. Conservation Biology 25, 932–944.
Human influence on the spatial structure of threatened Pacific salmon metapopulations.Crossref | GoogleScholarGoogle Scholar | 21797926PubMed |

Gattuso, J.-P., Bijma, J., Gehlen, M., Riebesell, U., and Turley, C. (2011). ‘Ocean Acidification: Knowns, Unknowns, and Perspectives.’ (Oxford University Press: Oxford, UK.)

Gonzalez, A., Rayfield, B., and Lindo, Z. (2011). The disentangled bank: how loss of habitat fragments and disassembles ecological networks. American Journal of Botany 98, 503–516.
The disentangled bank: how loss of habitat fragments and disassembles ecological networks.Crossref | GoogleScholarGoogle Scholar | 21613142PubMed |

Grill, G., Ouellet Dallaire, C., Fluet Chouinard, E., Sindorf, N., and Lehner, B. (2014). Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecological Indicators 45, 148–159.
Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin.Crossref | GoogleScholarGoogle Scholar |

Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41–49.
Metapopulation dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntl2rurw%3D&md5=6863c867add23810f8d6ba4dc88fce47CAS |

Hauser, L., Adcock, G. J., Smith, P. J., Ramirez, J. H. B., and Carvalho, G. R. (2002). Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proceedings of the National Academy of Sciences of the United States of America 99, 11742–11747.
Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFWqtrs%3D&md5=0145d52fc1eaf5dd023bbbd5009249b0CAS | 12185245PubMed |

Hermoso, V., Linke, S., Prenda, J., and Possingham, H. (2011). Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshwater Biology 56, 57–70.
Addressing longitudinal connectivity in the systematic conservation planning of fresh waters.Crossref | GoogleScholarGoogle Scholar |

IPCC (2013). Climate Change 2013: The physical science basis. In ‘Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley.) pp. 1535. (Cambridge University Press: Cambridge, UK, and New York.)

Iwamura, T., Possingham, H. P., Chades, I., Minton, C., Murray, N. J., Rogers, D. I., Treml, E. A., and Fuller, R. A. (2013). Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proceedings of the Royal Society of London – B. Biological Sciences 280, 20130325.
Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations.Crossref | GoogleScholarGoogle Scholar |

Iwamura, T., Fuller, R. A., and Possingham, H. P. (2014). Optimal management of a multispecies shorebird flyway under sea-level rise. Conservation Biology 28, 1710–1720.
Optimal management of a multispecies shorebird flyway under sea-level rise.Crossref | GoogleScholarGoogle Scholar | 24975747PubMed |

Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., and Estes, J. A. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637.
Historical overfishing and the recent collapse of coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Khu7o%3D&md5=1697cc02fae25b68935990cbe6bd5c34CAS |

Jacoby, D. M. P., Brooks, E. J., Croft, D. P., and Sims, D. W. (2012). Developing a deeper understanding of animal movements and spatial dynamics through novel application of network analyses. Methods in Ecology and Evolution 3, 574–583.
Developing a deeper understanding of animal movements and spatial dynamics through novel application of network analyses.Crossref | GoogleScholarGoogle Scholar |

Jaeger, K. L., Olden, J. D., and Pelland, N. A. (2014). Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences of the United States of America 111, 13894–13899.
Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVartr3L&md5=ccad28974d24dbf8e4c89f72f47a8c91CAS | 25136090PubMed |

Kavanaugh, M. T., Holtgrieve, G. W., Baulch, H., Brum, J. R., Cuvelier, M. L., Filstrup, C. T., Nickols, K. J., and Small, G. E. (2013). A salty divide within ASLO. Limnology Oceanography Bulletin 22, 34–37.

Kerr, L. A., Cadrin, S. X., and Secor, D. H. (2010). Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics. ICES Journal of Marine Science 67, 1631–1639.
Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics.Crossref | GoogleScholarGoogle Scholar |

Kindlmann, P., and Burel, F. (2008). Connectivity measures: a review. Landscape Ecology 23, 879–890.

Kininmonth, S. J., De’ath, G., and Possingham, H. P. (2010). Graph theoretic topology of the Great but small Barrier Reef world. Theoretical Ecology 3, 75–88.
Graph theoretic topology of the Great but small Barrier Reef world.Crossref | GoogleScholarGoogle Scholar |

Kininmonth, S., Beger, M., Bode, M., Peterson, E., Adams, V. M., Dorfman, D., Brumbaugh, D. R., and Possingham, H. P. (2011). Dispersal connectivity and reserve selection for marine conservation. Ecological Modelling 222, 1272–1282.
Dispersal connectivity and reserve selection for marine conservation.Crossref | GoogleScholarGoogle Scholar |

Kool, J., Moilanen, A., and Treml, E. (2013). Population connectivity: recent advances and new perspectives. Landscape Ecology 28, 165–185.
Population connectivity: recent advances and new perspectives.Crossref | GoogleScholarGoogle Scholar |

Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G. (2010). Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13, 1419–1434.
Meta‐analysis reveals negative yet variable effects of ocean acidification on marine organisms.Crossref | GoogleScholarGoogle Scholar | 20958904PubMed |

Lamberti, G. A., Chaloner, D. T., and Hershey, A. E. (2010). Linkages among aquatic ecosystems. Journal of the North American Benthological Society 29, 245–263.
Linkages among aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |

Levin, L. A. (2006). Recent progress in understanding larval dispersal: new directions and digressions. Integrative and Comparative Biology 46, 282–297.
Recent progress in understanding larval dispersal: new directions and digressions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFehsLw%3D&md5=466aaebef27b19c93faa02974ad0ba8aCAS | 21672742PubMed |

Ling, S. D., Johnson, C. R., Frusher, S. D., and Ridway, K. R. (2009). Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proceedings of the National Academy of Sciences of the United States of America 106, 22341–22345.
Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlamuw%3D%3D&md5=136405ea6c3670601ded6f91de674a57CAS | 20018706PubMed |

Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., and Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809.
Depletion, degradation, and recovery potential of estuaries and coastal seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVSnt7Y%3D&md5=5f6542f350a356e7cbdaa27615500a95CAS | 16794081PubMed |

McKay, S. K., Schramski, J. R., Conyngham, J. N., and Fischenich, J. C. (2013). Assessing upstream fish passage connectivity with network analysis. Ecological Applications 23, 1396–1409.
Assessing upstream fish passage connectivity with network analysis.Crossref | GoogleScholarGoogle Scholar | 24147411PubMed |

Menge, B. A., Chan, F., Dudas, S., Eerkes-Medrano, D., Grorud-Colvert, K., Heiman, K., Hessing-Lewis, M., Iles, A., Milston-Clements, R., and Noble, M. (2009). Terrestrial ecologists ignore aquatic literature: asymmetry in citation breadth in ecological publications and implications for generality and progress in ecology. Journal of Experimental Marine Biology and Ecology 377, 93–100.
Terrestrial ecologists ignore aquatic literature: asymmetry in citation breadth in ecological publications and implications for generality and progress in ecology.Crossref | GoogleScholarGoogle Scholar |

Metaxas, A., and Saunders, M. (2009). Quantifying the ‘bio-’ components in biophysical models of larval transport in marine benthic invertebrates: advances and pitfalls. The Biological Bulletin 216, 257–272.
| 19556593PubMed |

Meyer, J. L., Strayer, D. L., Wallace, J. B., Eggert, S. L., Helfman, G. S., and Leonard, N. E. (2007). The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources Association 43, 86–103.
The contribution of headwater streams to biodiversity in river networks.Crossref | GoogleScholarGoogle Scholar |

Minor, E. S., and Urban, D. L. (2008). A graph-theory framework for evaluating landscape connectivity and conservation planning. Conservation Biology 22, 297–307.
A graph-theory framework for evaluating landscape connectivity and conservation planning.Crossref | GoogleScholarGoogle Scholar | 18241238PubMed |

Molnar, J. L., Gamboa, R. L., Revenga, C., and Spalding, M. D. (2008). Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment 6, 485–492.
Assessing the global threat of invasive species to marine biodiversity.Crossref | GoogleScholarGoogle Scholar |

Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B., and Cahoon, D. R. (2002). Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877.
Responses of coastal wetlands to rising sea level.Crossref | GoogleScholarGoogle Scholar |

Muirhead, J. R., and Macisaac, H. J. (2005). Development of inland lakes as hubs in an invasion network. Journal of Applied Ecology 42, 80–90.
Development of inland lakes as hubs in an invasion network.Crossref | GoogleScholarGoogle Scholar |

Mumby, P. J., Elliott, I. A., Eakin, C. M., Skirving, W., Paris, C. B., Edwards, H. J., Enríquez, S., Iglesias‐Prieto, R., Cherubin, L. M., and Stevens, J. R. (2011). Reserve design for uncertain responses of coral reefs to climate change. Ecology Letters 14, 132–140.
Reserve design for uncertain responses of coral reefs to climate change.Crossref | GoogleScholarGoogle Scholar | 21105980PubMed |

Munday, P., Leis, J., Lough, J., Paris, C., Kingsford, M., Berumen, M., and Lambrechts, J. (2009). Climate change and coral reef connectivity. Coral Reefs 28, 379–395.
Climate change and coral reef connectivity.Crossref | GoogleScholarGoogle Scholar |

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review 45, 167–256.
The structure and function of complex networks.Crossref | GoogleScholarGoogle Scholar |

Pereira, M., Segurado, P., and Neves, N. (2011). Using spatial network structure in landscape management and planning: a case study with pond turtles. Landscape and Urban Planning 100, 67–76.
Using spatial network structure in landscape management and planning: a case study with pond turtles.Crossref | GoogleScholarGoogle Scholar |

Perkin, J. S., Gido, K. B., Al-Ta’ani, O., and Scoglio, C. (2013). Simulating fish dispersal in stream networks fragmented by multiple road crossings. Ecological Modelling 257, 44–56.
Simulating fish dispersal in stream networks fragmented by multiple road crossings.Crossref | GoogleScholarGoogle Scholar |

Perkins, D. M., Reiss, J., Yvon-Durocher, G., and Woodward, G. (2010). Global change and food webs in running waters. Hydrobiologia 657, 181–198.
Global change and food webs in running waters.Crossref | GoogleScholarGoogle Scholar |

Peterson, E. E., and Ver Hoef, J. M. (2010). A mixed-model moving-average approach to geostatistical modeling in stream networks. Ecology 91, 644–651.
A mixed-model moving-average approach to geostatistical modeling in stream networks.Crossref | GoogleScholarGoogle Scholar | 20426324PubMed |

Peterson, E. E., Ver Hoef, J. M., Isaak, D. J., Falke, J. A., Fortin, M.-J., Jordan, C. E., McNyset, K., Monestiez, P., Ruesch, A. S., Sengupta, A., Som, N., Steel, E. A., Theobald, D. M., Torgersen, C. E., and Wenger, S. J. (2013). Modelling dendritic ecological networks in space: an integrated network perspective. Ecology Letters 16, 707–719.
Modelling dendritic ecological networks in space: an integrated network perspective.Crossref | GoogleScholarGoogle Scholar | 23458322PubMed |

Planque, B., Fromentin, J. M., Cury, P., Drinkwater, K. F., Jennings, S., Perry, R. I., and Kifani, S. (2010). How does fishing alter marine populations and ecosystems sensitivity to climate? Journal of Marine Systems 79, 403–417.
How does fishing alter marine populations and ecosystems sensitivity to climate?Crossref | GoogleScholarGoogle Scholar |

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., and Burrows, M. T. (2013). Global imprint of climate change on marine life. Nature Climate Change 3, 919–925.
Global imprint of climate change on marine life.Crossref | GoogleScholarGoogle Scholar |

Proulx, S. R., Promislow, D. E. L., and Phillips, P. C. (2005). Network thinking in ecology and evolution. Trends in Ecology & Evolution 20, 345–353.
Network thinking in ecology and evolution.Crossref | GoogleScholarGoogle Scholar |

Rayfield, B., Fortin, M. J., and Fall, A. (2011). Connectivity for conservation: a framework to classify network measures. Ecology 92, 847–858.
Connectivity for conservation: a framework to classify network measures.Crossref | GoogleScholarGoogle Scholar | 21661548PubMed |

Reid, P. C., Johns, D. G., Edwards, M., Starr, M., Poulin, M., and Snoeijs, P. (2007). A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Global Change Biology 13, 1910–1921.
A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, R., Carretero, M., Sillero, N., Alarcos, G., Ortiz-Santaliestra, M., Lizana, M., and Llorente, G. (2011). The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns? Landscape Ecology 26, 673–682.
The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns?Crossref | GoogleScholarGoogle Scholar |

Riebesell, U., and Tortell, P. D. (2011). Effects of ocean acidification on pelagic organisms and ecosystems. In ‘Ocean Acidification’. (Eds J.-P. Gattuso and L. Hansson.) pp. 99–121. (Oxford University Press: Oxford, UK.)

Rossi, V., Ser‐Giacomi, E., López, C., and Hernández‐García, E. (2014). Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophysical Research Letters 41, 2883–2891.
Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves.Crossref | GoogleScholarGoogle Scholar |

Saunders, M., and Metaxas, A. (2008). High recruitment of the introduced bryozoan Membranipora membranacea is associated with kelp bed defoliation in Nova Scotia, Canada. Marine Ecology Progress Series 369, 139–151.
High recruitment of the introduced bryozoan Membranipora membranacea is associated with kelp bed defoliation in Nova Scotia, Canada.Crossref | GoogleScholarGoogle Scholar |

Saunders, M. I., Leon, J., Phinn, S. R., Callaghan, D. P., O’Brien, K. R., Roelfsema, C. M., Lovelock, C. E., Lyons, M. B., and Mumby, P. J. (2013). Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Global Change Biology 19, 2569–2583.
Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise.Crossref | GoogleScholarGoogle Scholar | 23564697PubMed |

Schick, R. S., and Lindley, S. T. (2007). Directed connectivity among fish populations in a riverine network. Journal of Applied Ecology 44, 1116–1126.
Directed connectivity among fish populations in a riverine network.Crossref | GoogleScholarGoogle Scholar |

Segurado, P., Branco, P., and Ferreira, M. T. (2013). Prioritizing restoration of structural connectivity in rivers: a graph based approach. Landscape Ecology 28, 1231–1238.
Prioritizing restoration of structural connectivity in rivers: a graph based approach.Crossref | GoogleScholarGoogle Scholar |

Søndergaard, M., and Jeppesen, E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology 44, 1089–1094.
Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration.Crossref | GoogleScholarGoogle Scholar |

Steneck, R., Paris, C., Arnold, S., Ablan-Lagman, M., Alcala, A., Butler, M., McCook, L., Russ, G., and Sale, P. (2009). Thinking and managing outside the box: coalescing connectivity networks to build region-wide resilience in coral reef ecosystems. Coral Reefs 28, 367–378.
Thinking and managing outside the box: coalescing connectivity networks to build region-wide resilience in coral reef ecosystems.Crossref | GoogleScholarGoogle Scholar |

Strathmann, R. R., Hughes, T. P., Kuris, A. M., Lindeman, K. C., Morgan, S. G., Pandolfi, J. M., and Warner, R. R. (2002). Evolution of local recruitment and its consequences for marine populations. Bulletin of Marine Science 70, 377–396.

Strayer, D. L. (2010). Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55, 152–174.
Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future.Crossref | GoogleScholarGoogle Scholar |

Taylor, P. D., Fahrig, L., Henein, K., and Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos 68, 571–573.
Connectivity is a vital element of landscape structure.Crossref | GoogleScholarGoogle Scholar |

Traill, L. W., Perhans, K., Lovelock, C. E., Prohaska, A., McFallan, S., Rhodes, J. R., and Wilson, K. A. (2011). Managing for change: wetland transitions under sea level rise and outcomes for threatened species. Diversity & Distributions 17, 1225–1233.
Managing for change: wetland transitions under sea level rise and outcomes for threatened species.Crossref | GoogleScholarGoogle Scholar |

Treml, E. A., Halpin, P. N., Urban, D. L., and Pratson, L. F. (2008). Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecology 23, 19–36.
Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation.Crossref | GoogleScholarGoogle Scholar |

Urban, D., and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology 82, 1205–1218.
Landscape connectivity: a graph-theoretic perspective.Crossref | GoogleScholarGoogle Scholar |

Urban, D. L., Minor, E. S., Treml, E. A., and Schick, R. S. (2009). Graph models of habitat mosaics. Ecology Letters 12, 260–273.
Graph models of habitat mosaics.Crossref | GoogleScholarGoogle Scholar | 19161432PubMed |

Van Looy, K., Cavillon, C., Tormos, T., Piffady, J., Landry, P., and Souchon, Y. (2013). A scale-sensitive connectivity analysis to identify ecological networks and conservation value in river networks. Landscape Ecology 28, 1239–1249.
A scale-sensitive connectivity analysis to identify ecological networks and conservation value in river networks.Crossref | GoogleScholarGoogle Scholar |

Watson, J. R., Siegel, D. A., Kendall, B. E., Mitarai, S., Rassweiller, A., and Gaines, S. D. (2011). Identifying critical regions in small-world marine metapopulations. Proceedings of the National Academy of Sciences of the United States of America 108, E907–E913.
Identifying critical regions in small-world marine metapopulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGkt7%2FN&md5=fea9d6d8654f1947ce28b96062f90f3fCAS | 21987813PubMed |

White, J. W., Schroeger, J., Drake, P. T., and Edwards, C. A. (2014). The value of larval connectivity information in the static optimization of marine reserve design. Conservation Letters 7, 533–544.
The value of larval connectivity information in the static optimization of marine reserve design.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. A. (2002). Riverine landscapes: taking landscape ecology into the water. Freshwater Biology 47, 501–515.
Riverine landscapes: taking landscape ecology into the water.Crossref | GoogleScholarGoogle Scholar |

Wilmers, C. C. (2007). Understanding ecosystem robustness. Trends in Ecology & Evolution 22, 504–506.
Understanding ecosystem robustness.Crossref | GoogleScholarGoogle Scholar |

Yan, N. D., Girard, R., and Boudreau, S. (2002). An introduced invertebrate predator (Bythotrephes) reduces zooplankton species richness. Ecology Letters 5, 481–485.
An introduced invertebrate predator (Bythotrephes) reduces zooplankton species richness.Crossref | GoogleScholarGoogle Scholar |