High clonality in Acropora palmata and Acropora cervicornis populations of Guadeloupe, French Lesser Antilles
A. Japaud A , C. Bouchon A , J.-L. Manceau A and C. Fauvelot B CA UMR 7208 BOREA, LabEx CORAIL, Université des Antilles et de la Guyane, BP 592, 97159 Pointe-à-Pitre, Guadeloupe.
B UMR 9220 ENTROPIE, LabEx CORAIL, Centre IRD de Nouméa, 101 Promenade Roger Laroque, BPA5, 98848 Nouméa, New Caledonia.
C Corresponding author. Email: cecile.fauvelot@ird.fr
Marine and Freshwater Research 66(9) 847-851 https://doi.org/10.1071/MF14181
Submitted: 27 June 2014 Accepted: 5 November 2014 Published: 19 March 2015
Abstract
Since the 1980s, population densities of Acroporidae have dramatically declined in the Caribbean Sea. Quantitative censuses of Acroporidae provide information on the number of colonies (i.e. ramets), but not on the number of genetically distinct individuals (i.e. genets). In this context, the aim of our study was to provide an overview of the genetic status of Acropora populations in Guadeloupe by examining the genotypic richness of Acropora palmata and Acropora cervicornis. Using 14 microsatellite loci, we found extremely low genotypic richness for both species from Caye-à-Dupont reef (i.e. 0.125 for A. palmata and nearly zero for A. cervicornis). Because genetic diversity contributes to the ability of organisms to evolve and adapt to new environmental conditions, our results are alarming in the context of ongoing global warming as long periods of clonal growth without sexual recruitment may lead to the extinction of these populations.
Additional keywords: genotypic richness, Acroporidae, microsatellites, Caribbean Sea.
References
Baums, I. B., Hughes, C. R., and Hellberg, M. E. (2005). Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Marine Ecology Progress Series 288, 115–127.| Mendelian microsatellite loci for the Caribbean coral Acropora palmata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFahs7Y%3D&md5=ec00adb734e85aab443b315c6ff91f20CAS |
Baums, I. B., Miller, M. W., and Hellberg, M. E. (2006). Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecological Monographs 76, 503–519.
| Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata.Crossref | GoogleScholarGoogle Scholar |
Baums, I. B., Devlin-Durante, M. K., Brown, L., and Pinzón, J. H. (2009). Nine novel, polymorphic microsatellite markers for the study of threatened Caribbean acroporid corals. Molecular Ecology Resources 9, 1155–1158.
| Nine novel, polymorphic microsatellite markers for the study of threatened Caribbean acroporid corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Omu7s%3D&md5=bed85ac93adeddc4f4a85d3c2956e905CAS | 21564860PubMed |
Booth, R. E., and Grime, J. P. (2003). Effects of genetic impoverishment on plant community diversity. Journal of Ecology 91, 721–730.
| Effects of genetic impoverishment on plant community diversity.Crossref | GoogleScholarGoogle Scholar |
Bottjer, D. J. (1980). Branching morphology of the reef coral Acropora cervicornis in different hydraulic regimes. Journal of Paleontology 54, 1102–1107.
Bruckner, A. W. (2002). Proceedings of the Caribbean Acropora Workshop: Potential Application of the US Endangered Species Act as a Conservation Strategy. NOAA Technical Memorandum NMFS-OPR-24, Silver Spring, MD, USA.
Coffroth, M. A., and Lasker, H. R. (1998). Population structure of a clonal gorgonian coral: the interplay between clonal reproduction and disturbance. Evolution 52, 379–393.
| Population structure of a clonal gorgonian coral: the interplay between clonal reproduction and disturbance.Crossref | GoogleScholarGoogle Scholar |
Edmunds, P. J., and Gates, R. D. (2003). Has coral bleaching delayed our understanding of fundamental aspects of coral–dinoflagellate symbioses? Bioscience 53, 976–980.
| Has coral bleaching delayed our understanding of fundamental aspects of coral–dinoflagellate symbioses?Crossref | GoogleScholarGoogle Scholar |
Faircloth, B. C. (2006). GMCONVERT: file conversion for GENEMAPPER output files. Molecular Ecology Notes 6, 968–970.
| GMCONVERT: file conversion for GENEMAPPER output files.Crossref | GoogleScholarGoogle Scholar |
Garcia Reyes, J., and Schizas, N. V. (2010). No two reefs are created equal: fine-scale population structure in the threatened coral species Acropora palmata and A. cervicornis. Aquatic Biology 10, 69–83.
| No two reefs are created equal: fine-scale population structure in the threatened coral species Acropora palmata and A. cervicornis.Crossref | GoogleScholarGoogle Scholar |
Gladfelter, E. H. (1982). Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1, 45–51.
| Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite.Crossref | GoogleScholarGoogle Scholar |
Honnay, O., and Bossuyt, B. (2005). Prolonged clonal growth: escape route or route to extinction? Oikos 108, 427–432.
| Prolonged clonal growth: escape route or route to extinction?Crossref | GoogleScholarGoogle Scholar |
Mège, P., Schizas, N. V., Garcia Reyes, J., and Hrbek, T. (2014). Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf. Marine Ecology , .
| Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf.Crossref | GoogleScholarGoogle Scholar |
Meirmans, P. G., and van Tienderen, P. H. (2004). GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792–794.
| GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms.Crossref | GoogleScholarGoogle Scholar |
Miller, W. J., Muller, E. M., Rogers, C. S., Waara, R., Atkinson, A., Whelan, K. R. T., Patterson, M., and Witcher, B. (2009). Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28, 925–937.
| Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands.Crossref | GoogleScholarGoogle Scholar |
Precht, W. F., Bruckner, A. W., Aronson, R. B., and Bruckner, R. J. (2002). Endangered acroporid corals of the Caribbean. Coral Reefs 21, 41–42.
| Endangered acroporid corals of the Caribbean.Crossref | GoogleScholarGoogle Scholar |
Raymond, M., and Rousset, F. (1995). GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.
Reusch, T. B. H., Ehlers, A., Hämmerli, A., and Worm, B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America 102, 2826–2831.
| Ecosystem recovery after climatic extremes enhanced by genotypic diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVSksLY%3D&md5=59586bd85360e249b3716a345535f949CAS |
Tunnicliffe, V. (1981). Breakage and propagation of the stony coral Acropora cervicornis. Proceedings of the National Academy of Sciences of the United States of America 78, 2427–2431.
| Breakage and propagation of the stony coral Acropora cervicornis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnivVKgtg%3D%3D&md5=e5e35f1d229a26915a0e0a704df56246CAS | 16593007PubMed |
Van Oppen, M. J. H., Willis, B. L., van Vugt, H. W. J. A., and Miller, D. J. (2000). Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Molecular Ecology 9, 1363–1373.
| Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCmu78%3D&md5=6ade6300f4a238be12377c6b45931d61CAS |
Van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. J., and Berkelmans, R. (2011). Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 3, 405–423.
| Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2gurfP&md5=822eebf3f902cf28e503c28dc183e33eCAS |
Vollmer, S. V., and Palumbi, S. R. (2002). Hybridization and the evolution of reef coral diversity. Science 296, 2023–2025.
| Hybridization and the evolution of reef coral diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1eqt7c%3D&md5=63cf7768f33484a3e637592cd7cdcbc1CAS | 12065836PubMed |
Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
| Estimating F-statistics for the analysis of population structure.Crossref | GoogleScholarGoogle Scholar |
Williams, D. E., and Miller, M. W. (2005). Coral disease outbreak: pattern, prevalence and transmission in Acropora cervicornis. Marine Ecology Progress Series 301, 119–128.
| Coral disease outbreak: pattern, prevalence and transmission in Acropora cervicornis.Crossref | GoogleScholarGoogle Scholar |