Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Significant genetic structure despite high vagility revealed through mitochondrial phylogeography of an Australian freshwater turtle (Chelodina longicollis)

K. Hodges A B , S. Donnellan B C and A. Georges A D
+ Author Affiliations
- Author Affiliations

A Institute for Applied Ecology and Collaborative Research Network for Murray–Darling Basin Futures, University of Canberra, ACT 2601, Australia.

B Australian Centre for Evolutionary Biology and Biodiversity, University of Adelaide, Adelaide, SA 5005, Australia.

C South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

D Corresponding author. Email: georges@aerg.canberra.edu.au

Marine and Freshwater Research 66(11) 1045-1056 https://doi.org/10.1071/MF14102
Submitted: 12 April 2014  Accepted: 5 November 2014   Published: 22 April 2015

Abstract

Restriction to the freshwater environment plays a dominant role in the population genetic structure of freshwater fauna. In taxa with adaptations for terrestriality, however, the restrictions on dispersal imposed by drainage divides may be overcome. We investigate the mitochondrial phylogeographic structure of the eastern long-necked turtle (Chelodina longicollis), a widespread Australian freshwater obligate with strong overland dispersa\l capacity and specific adaptations to terrestriality. We predict that such characteristics make this freshwater species a strong candidate to test how life-history traits can drive gene flow and interbasin connectivity, overriding the constraining effects imposed by hydrological boundaries. Contrary to expectations, and similar to low-vagility freshwater vertebrates, we found two ancient mitochondrial haplogroups with clear east–west geographic partitioning either side of the Great Dividing Range. Each haplogroup is characterised by complex genetic structure, demographically stable subpopulations, and signals of isolation by distance. This pattern is overlaid with signatures of recent gene flow, likely facilitated by late Pleistocene and ongoing anthropogenic landscape change. We demonstrate that the divergent effects of landscape history can overwhelm the homogenising effects of life-history traits that connect populations, even in a highly vagile species.

Additional keywords: dispersal, freshwater biogeography, mitochondrial DNA, Murray–Darling Basin, Pleistocene refugia.


References

Austin, C., Nguyen, T. T., Meewan, M., and Jerry, D. R. (2003). The taxonomy and evolution of the “Cherax destructor” complex (Decapoda: Parastacidae) re-examined using mitochondrial 16S sequences. Australian Journal of Zoology 51, 99–110.
The taxonomy and evolution of the “Cherax destructor” complex (Decapoda: Parastacidae) re-examined using mitochondrial 16S sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFagsL8%3D&md5=07262260947d81554e8a932a68f27485CAS |

Banarescu, P. 1990. ‘Zoogeography of Fresh Waters. Volumes 1–3.’ (AULAVerlag: Wiesbaden.)

Bell, D. M., Hunter, J. T., and Haworth, R. J. (2008). Montane lakes (lagoons) of the New England Tablelands Bioregion. Cunninghamia 10, 475–492.

Blom, W. M., and Alsop, D. B. (1988). Carbonate mud sedimentation on a temperate shelf: Bass Basin, southeastern Australia. Sedimentary Geology 60, 269–280.
Carbonate mud sedimentation on a temperate shelf: Bass Basin, southeastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvFKltrg%3D&md5=24a7c865bed41b21d1af3cccb92ef483CAS |

Bower, D. S., and Hodges, K. (2014). Chelodina expansa Gray 1857 – broad-shelled turtle, giant snake-necked turtle. Chelonian research monographs 5, 71.1–81.1.

Bowler, J. M., Kotsonis, A., and Lawrence, C. (2005). Environmental evolution of the mallee region, western Murray Basin. Proceedings of the Royal Society of Victoria 118, 161–210.

Burridge, C. P., Craw, D., and Waters, J. M. (2007). An empirical test of freshwater vicariance via river capture. Molecular Ecology 16, 1883–1895.
An empirical test of freshwater vicariance via river capture.Crossref | GoogleScholarGoogle Scholar | 17444899PubMed |

Cann, J. (1998). ‘Australian Freshwater Turtles.’ (Beaumont Publishing: Singapore.)

Chapple, D. G., Chapple, S. N. J., and Thompson, M. B. (2011). Biogeographic barriers in south-eastern Australia drive phylogeographic divergence in the garden skink, Lampropholis guichenoti. Journal of Biogeography 38, 1761–1775.
Biogeographic barriers in south-eastern Australia drive phylogeographic divergence in the garden skink, Lampropholis guichenoti.Crossref | GoogleScholarGoogle Scholar |

Chessman, B. (1984a). Food of the snake-necked turtle, Chelodina longicollis (Shaw) (Testudines: Chelidae) in the Murray Valley, Victoria and New South Wales. Australian Wildlife Research 11, 573–578.
Food of the snake-necked turtle, Chelodina longicollis (Shaw) (Testudines: Chelidae) in the Murray Valley, Victoria and New South Wales.Crossref | GoogleScholarGoogle Scholar |

Chessman, B. (1984b). Evaporative water loss from three south-eastern Australian species of freshwater turtle. Australian Journal of Zoology 32, 649–655.
Evaporative water loss from three south-eastern Australian species of freshwater turtle.Crossref | GoogleScholarGoogle Scholar |

Chessman, B. (1988). Habitat preferences of fresh-water turtles in the Murray Valley, Victoria and New South Wales. Wildlife Research 15, 485–491.
Habitat preferences of fresh-water turtles in the Murray Valley, Victoria and New South Wales.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., O’Meally, D., and Sadlier, R. A. (2009). Phylogeographic patterns in reptiles on the New England tablelands at the south-western boundary of the McPherson Macleay overlap. Australian Journal of Zoology 57, 317–328.
Phylogeographic patterns in reptiles on the New England tablelands at the south-western boundary of the McPherson Macleay overlap.Crossref | GoogleScholarGoogle Scholar |

Cook, B. D., Baker, A. M., Page, T. J., Grant, S., Fawcett, J. H., Hurwood, D. A., and Hughes, J. M. (2006). Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification. Molecular Ecology 15, 1083–1093.
Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslWms74%3D&md5=847e6c5385347204d342bb5378e02cbfCAS | 16599968PubMed |

Costanzo, J. P., Iverson, J. B., Wright, M. F., and Lee, R. E. (1995). Cold hardiness and overwintering strategies of hatchlings in an assemblage of northern turtles. Ecology 76, 1772–1785.
Cold hardiness and overwintering strategies of hatchlings in an assemblage of northern turtles.Crossref | GoogleScholarGoogle Scholar |

Craw, D., Burridge, C. P., Upton, P., Rowe, D. L., and Waters, J. M. (2008). Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand. Journal of Biogeography 35, 1790–1802.
Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Excoffier, L., and Lischer, H. (2010). Arlequin suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |

Faulks, L. K., Gilligan, D. M., and Beheregaray, L. B. (2008). Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in eastern Australia: conservation implications. Marine and Freshwater Research 59, 89–96.
Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in eastern Australia: conservation implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKntL8%3D&md5=31a9a9bb320df616bb3d0ed670422f2aCAS |

Faulks, L. K., Gilligan, D. M., and Beheregaray, L. B. (2010). Clarifying an ambiguous evolutionary history: range-wide phylogeography of an Australian freshwater fish, the golden perch (Macquaria ambigua). Journal of Biogeography 37, 1329–1340.
Clarifying an ambiguous evolutionary history: range-wide phylogeography of an Australian freshwater fish, the golden perch (Macquaria ambigua).Crossref | GoogleScholarGoogle Scholar |

Fielder, D., Vernes, K., Alacs, E., and Georges, A. (2012). Mitochondrial variation among Australian freshwater turtles (genus Myuchelys), with special reference to the endangered M. bellii. Endangered Species Research 17, 63–71.
Mitochondrial variation among Australian freshwater turtles (genus Myuchelys), with special reference to the endangered M. bellii.Crossref | GoogleScholarGoogle Scholar |

Fu, Y. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 47, 915–925.

Georges, A., and Thompson, M. B. (2010). Diversity of Australasian freshwater turtles, with an annotated synonymy and keys to species. Zootaxa 2496, 1–37.

Georges, A., Zhang, X., Unmack, P., Le, M., and McCord, W. (2014). Contemporary genetic structure of an endemic freshwater turtle reflects Miocene orogenesis of New Guinea. Biological Journal of the Linnean Society. Linnean Society of London 111, 192–208.
Contemporary genetic structure of an endemic freshwater turtle reflects Miocene orogenesis of New Guinea.Crossref | GoogleScholarGoogle Scholar |

Goode, J. 1967. ‘Freshwater Tortoises of Australia and New Guinea.’ (Lansdown Press: Melbourne.)

Hammer, M. P., Adams, M., Unmack, P. J., and Walker, K. F. (2007). A rethink on Retropinna: conservation implications of new taxa and significant genetic sub-structure in Australian smelts (Pisces: Retropinnidae). Marine and Freshwater Research 58, 327–341.
A rethink on Retropinna: conservation implications of new taxa and significant genetic sub-structure in Australian smelts (Pisces: Retropinnidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1entbY%3D&md5=661fe1e38c6695f7db88b536f7dda5e6CAS |

Haworth, R. J., Gale, S., Short, S. A., and Heijnis, H. (1999). Land use and lake sedimentation on the New England Tablelands of New South Wales, Australia. The Australian Geographer 30, 51–73.
Land use and lake sedimentation on the New England Tablelands of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Hodges, K., Georges, A., and Donnellan, S. (2014). Phylogeography of the Australian freshwater turtle Chelodina expansa reveals complex relationships among inland and coastal bioregions. Biological Journal of the Linnean Society. Linnean Society of London 111, 789–805.
Phylogeography of the Australian freshwater turtle Chelodina expansa reveals complex relationships among inland and coastal bioregions.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., and Hillyer, M. (2006). Mitochondrial DNA and allozymes reveal high dispersal abilities and historical movement across drainage boundaries in two species of freshwater fishes from inland rivers in Queensland, Australia. Journal of Fish Biology 68, 270–291.
Mitochondrial DNA and allozymes reveal high dispersal abilities and historical movement across drainage boundaries in two species of freshwater fishes from inland rivers in Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFaktr8%3D&md5=f89a5b44934caf5ff91bbce0262a83b6CAS |

Hughes, J. M., Schmidt, D. J., and Finn, D. S. (2009). Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59, 573–583.
Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., Huey, J. A., and Schmidt, D. J. (2013). Is realised connectivity among populations of aquatic fauna predictable from potential connectivity? Freshwater Biology 58, 951–966.
Is realised connectivity among populations of aquatic fauna predictable from potential connectivity?Crossref | GoogleScholarGoogle Scholar |

Irwin, D. E. (2002). Phylogeographic breaks without geographic barriers to gene flow. Evolution 56, 2383–2394.
Phylogeographic breaks without geographic barriers to gene flow.Crossref | GoogleScholarGoogle Scholar | 12583579PubMed |

Jerry, D. R. (2008). Phylogeography of the freshwater catfish Tandanus tandanus (Plotosidae): a model species to understand evolution of the eastern Australian freshwater fish fauna. Marine and Freshwater Research 59, 351–360.
Phylogeography of the freshwater catfish Tandanus tandanus (Plotosidae): a model species to understand evolution of the eastern Australian freshwater fish fauna.Crossref | GoogleScholarGoogle Scholar |

Jerry, D. R., and Cairns, S. C. (1998). Morphological variation in the catadromous Australian bass, from several geographically distinct riverine drainages. Journal of Fish Biology 52, 829–843.
Morphological variation in the catadromous Australian bass, from several geographically distinct riverine drainages.Crossref | GoogleScholarGoogle Scholar |

Kennett, R., and Georges, A. (1990). Habitat utilization and its relationship to growth and reproduction of the eastern long-necked turtle, Chelodina longicollis (Testudinata: Chelidae), from Australia. Herpetologica 46, 22–33.

Kennett, R., Roe, J., Hodges, K., and Georges, A. (2009). Chelodina longicollis (Shaw 1784) – eastern long-necked turtle, common long-necked turtle, common snake-necked turtle. Chelonian Research Monographs 5, 31.1–31.8.

Keogh, J. S., Scott, I., Fitzgerald, M., and Shine, R. (2003). Molecular phylogeny of the Australian venomous snake genus Hoplocephalus (Serpentes, Elapidae) and conservation genetics of the threatened H. stephensii. Conservation Genetics 4, 57–65.
Molecular phylogeny of the Australian venomous snake genus Hoplocephalus (Serpentes, Elapidae) and conservation genetics of the threatened H. stephensii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFOgsA%3D%3D&md5=8507afce72a027ba4b210f68cbe7458bCAS |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=66b62d5d48ea3641c50a009dafc59b81CAS | 19346325PubMed |

Masci, K. D., Ponniah, M., and Hughes, J. M. (2008). Patterns of connectivity between the Lake Eyre and Gulf drainages, Australia: a phylogeographic approach. Marine and Freshwater Research 59, 751–760.
Patterns of connectivity between the Lake Eyre and Gulf drainages, Australia: a phylogeographic approach.Crossref | GoogleScholarGoogle Scholar |

McGlashan, D. J., and Hughes, J. M. (2001). Genetic evidence for historical continuity between populations of the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae) east and west of the Great Dividing Range. Journal of Fish Biology 59, 55–67.
Genetic evidence for historical continuity between populations of the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae) east and west of the Great Dividing Range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlKksg%3D%3D&md5=c5d17e2c41a90922c1b1d0b52d3c9203CAS |

McGuigan, K., McDonald, K., Parris, K., and Moritz, C. (1998). Mitochondrial DNA diversity and historical biogeography of a wet forest-restricted frog (Litoria pearsoniana) from mid-east Australia. Molecular Ecology 7, 175–186.
Mitochondrial DNA diversity and historical biogeography of a wet forest-restricted frog (Litoria pearsoniana) from mid-east Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7ptl2msQ%3D%3D&md5=298d02c05544729107602b88d2f2947dCAS | 9532760PubMed |

Miller, A. D., Waggy, G., Ryan, S., and Austin, C. M. (2004). Mitochondrial 12S rRNA sequences support the existence of a third species of freshwater blackfish (Gadopsidae) from south-eastern Australia. Memoirs of the Museum of Victoria 61, 121–127.

Moussalli, A., Hugall, A. F., and Moritz, C. (2005). A mitochondrial phylogeny of the rainforest skink genus Saproscincus, Wells and Wellington (1984). Molecular Phylogenetics and Evolution 34, 190–202.
A mitochondrial phylogeny of the rainforest skink genus Saproscincus, Wells and Wellington (1984).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVaqsbzO&md5=3ee92fa94bfc43b8d2fa6606f6b0551dCAS | 15579392PubMed |

Murphy, N. P., and Austin, C. M. (2004). Phylogeography of the widespread Australian freshwater prawn, Macrobrachium australiense (Decapoda, Palaemonidae). Journal of Biogeography 31, 1065–1072.
Phylogeography of the widespread Australian freshwater prawn, Macrobrachium australiense (Decapoda, Palaemonidae).Crossref | GoogleScholarGoogle Scholar |

Musyl, M. K., and Keenan, C. P. (1992). Population genetics and zoogeography of Australian freshwater golden perch, Macquaria ambigua (Richardson 1845) (Teleostei: Percichthyidae), and electrophoretic identification of a new species from the Lake Eyre basin. Marine and Freshwater Research 43, 1585–1601.
Population genetics and zoogeography of Australian freshwater golden perch, Macquaria ambigua (Richardson 1845) (Teleostei: Percichthyidae), and electrophoretic identification of a new species from the Lake Eyre basin.Crossref | GoogleScholarGoogle Scholar |

Musyl, M. K., and Keenan, C. P. (1996). Evidence for cryptic speciation in Australian freshwater eel-tailed catfish, Tandanus tandanus (Teleostei: Plotosidae). Copeia 1996, 526–534.
Evidence for cryptic speciation in Australian freshwater eel-tailed catfish, Tandanus tandanus (Teleostei: Plotosidae).Crossref | GoogleScholarGoogle Scholar |

Nguyen, T. T. T., Austin, C. M., Meewan, M. M., Schultz, M. B., and Jerry, D. R. (2004). Phylogeography of the freshwater crayfish Cherax destructor Clark (Parastacidae) in inland Australia: historical fragmentation and recent range expansion. Biological Journal of the Linnean Society. Linnean Society of London 83, 539–550.
Phylogeography of the freshwater crayfish Cherax destructor Clark (Parastacidae) in inland Australia: historical fragmentation and recent range expansion.Crossref | GoogleScholarGoogle Scholar |

Nock, C. J., Elphinstone, M. S., Rowland, S. J., and Baverstock, P. R. (2010). Phylogenetics and revised taxonomy of the Australian freshwater cod genus, Maccullochella (Percichthyidae). Marine and Freshwater Research 61, 980–991.
Phylogenetics and revised taxonomy of the Australian freshwater cod genus, Maccullochella (Percichthyidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snt7nK&md5=5be32af1fc05b8d0d76cc3b9efe9ea28CAS |

Obbard, M. E., and Brooks, R. J. (1981a). Fate of overwintered clutches of the common snapping turtle (Chelydra serpentina) in Algonquin Park, Ontario. Canadian Field Naturalist 95, 350–352.

Obbard, M. E., and Brooks, R. J. (1981b). A radio telemetry and mark recapture study of activity in the common snapping turtle Chelydra serpentina. Copeia 1981, 630–637.
A radio telemetry and mark recapture study of activity in the common snapping turtle Chelydra serpentina.Crossref | GoogleScholarGoogle Scholar |

Page, T. J., and Hughes, J. M. (2014). Contrasting insights provided by single and multispecies data in a regional comparative phylogeographic study. Biological Journal of the Linnean Society. Linnean Society of London 111, 554–569.
Contrasting insights provided by single and multispecies data in a regional comparative phylogeographic study.Crossref | GoogleScholarGoogle Scholar |

Parmenter, C. J. (1976). The natural history of the Australian freshwater turtle Chelodina longicollis Shaw (Testudinata, Chelidae). Ph.D. Thesis. University of New England, Biddeford, ME.

Peakall, R., and Smouse, P. E. (2006). GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16, 37–45.
Intraspecific gene genealogies: trees grafting into networks.Crossref | GoogleScholarGoogle Scholar |

Rabosky, D. L., Donnellan, S. C., Talaba, A. L., and Lovette, I. J. (2007). Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proceedings. Biological Sciences 274, 2915.
Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamtg%3D%3D&md5=1d10894da703f61da75e96725dd5360aCAS |

Rambaut, A., and Drummond, A. J. (2007). Tracer. Available at http://beast.bio.ed.ac.uk/tracer [Verified 14 February 2015].

Ramos-Onsins, S., and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 2092–2100.
Statistical properties of new neutrality tests against population growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps12hsrc%3D&md5=787a9a390f45a1baf648eef7e1ddbc80CAS | 12446801PubMed |

Rix, M. G., and Harvey, M. S. (2012). Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia. Molecular Phylogenetics and Evolution 62, 375–396.
Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia.Crossref | GoogleScholarGoogle Scholar | 22040763PubMed |

Roe, J. H. (2008). Chelodina longicollis (eastern long-necked turtle): drinking behaviour. Herpetological Review 39, 212–213.

Roe, J., and Georges, A. (2007). Heterogeneous wetland complexes, buffer zones, and travel corridors: landscape management for freshwater reptiles. Biological Conservation 135, 67–76.
Heterogeneous wetland complexes, buffer zones, and travel corridors: landscape management for freshwater reptiles.Crossref | GoogleScholarGoogle Scholar |

Roe, J. H., and Georges, A. (2008). Terrestrial activity, movements and spatial ecology of an Australian freshwater turtle, Chelodina longicollis, in a temporally dynamic wetland system. Austral Ecology 33, 1045–1056.
Terrestrial activity, movements and spatial ecology of an Australian freshwater turtle, Chelodina longicollis, in a temporally dynamic wetland system.Crossref | GoogleScholarGoogle Scholar |

Roe, J. H., Georges, A., and Green, B. (2008). Energy and water flux during terrestrial estivation and overland movement in a freshwater turtle. Physiological and Biochemical Zoology 81, 570–583.
Energy and water flux during terrestrial estivation and overland movement in a freshwater turtle.Crossref | GoogleScholarGoogle Scholar | 18717626PubMed |

Rogers, L. J. (1966). The nitrogen excretion of Chelodina longicollis under conditions of hydration and dehydration. Comparative Biochemistry and Physiology 18, 249–260.
The nitrogen excretion of Chelodina longicollis under conditions of hydration and dehydration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xkt1ejtbc%3D&md5=095e9e76813c1dcef83200098cbf2e6eCAS |

Rowland, S. J. (1993). Maccullochella ikei, an endangered species of freshwater cod (Pisces: Percicthyidae) from the Clarence River system, NSW and M. peeli mariensis, a new subspecies from the Mary River system, Qld. Records of the Australian Museum 45, 121–145.
Maccullochella ikei, an endangered species of freshwater cod (Pisces: Percicthyidae) from the Clarence River system, NSW and M. peeli mariensis, a new subspecies from the Mary River system, Qld.Crossref | GoogleScholarGoogle Scholar |

Ruzzante, D. E., Walde, S. J., Macchi, P., Alonso, M., and Barriga, J. (2011). Phylogeography and phenotypic diversification in the Patagonian fish Percichthys trucha: the roles of Quaternary glacial cycles and natural selection. Biological Journal of the Linnean Society. Linnean Society of London 103, 514–529.
Phylogeography and phenotypic diversification in the Patagonian fish Percichthys trucha: the roles of Quaternary glacial cycles and natural selection.Crossref | GoogleScholarGoogle Scholar |

Šlechtová, V., Bohlen, J., Freyhof, J., Persat, H., and Delmastro, G. B. (2004). The Alps as barrier to dispersal in cold-adapted freshwater fishes? Phylogeographic history and taxonomic status of the bullhead in the Adriatic freshwater drainage. Molecular Phylogenetics and Evolution 33, 225–239.
The Alps as barrier to dispersal in cold-adapted freshwater fishes? Phylogeographic history and taxonomic status of the bullhead in the Adriatic freshwater drainage.Crossref | GoogleScholarGoogle Scholar | 15324851PubMed |

Smissen, P. J., Melville, J., Sumner, J., and Jessop, T. S. (2013). Mountain barriers and river conduits: phylogeographical structure in a large, mobile lizard (Varanidae: Varanus varius) from eastern Australia. Journal of Biogeography 40, 1729–1740.
Mountain barriers and river conduits: phylogeographical structure in a large, mobile lizard (Varanidae: Varanus varius) from eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10.’ (Sinauer Associates: Sunderland, MA.)

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=995bed9ac432f08c54a64a25c2093186CAS | 2513255PubMed |

Thacker, C. E., Unmack, P. J., Matsui, L., and Rifenbark, N. (2007). Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species. Journal of Biogeography 34, 1518–1533.
Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species.Crossref | GoogleScholarGoogle Scholar |

Thacker, C. E., Unmack, P. J., Matsui, L., Duong, P., and Huang, E. (2008). Phylogeography of Philypnodon species (Teleostei: Eleotridae) across south-eastern Australia: testing patterns of connectivity across drainage divides and among coastal rivers. Biological Journal of the Linnean Society. Linnean Society of London 95, 175–192.
Phylogeography of Philypnodon species (Teleostei: Eleotridae) across south-eastern Australia: testing patterns of connectivity across drainage divides and among coastal rivers.Crossref | GoogleScholarGoogle Scholar |

Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., and Higgins, D. (1997). The CLUSTAL_X windows interface. Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The CLUSTAL_X windows interface. Flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=582e30676f98d9a8cb16b3515803c44eCAS | 9396791PubMed |

Todd, E. V., Blair, D., Farley, S., Farrington, L., FitzSimmons, N. N., Georges, A., Limpus, C. J., and Jerry, D. R. (2013). Contemporary genetic structure reflects historical drainage isolation in an Australian snapping turtle, Elseya albagula. Zoological Journal of the Linnean Society 169, 200–214.
Contemporary genetic structure reflects historical drainage isolation in an Australian snapping turtle, Elseya albagula.Crossref | GoogleScholarGoogle Scholar |

Todd, E. V., Blair, D., and Jerry, D. R. (2014). Influence of drainage divides versus arid corridors on genetic structure and demography of a widespread freshwater turtle, Emydura macquarii krefftii, from Australia. Ecology and Evolution 4, 606–622.
Influence of drainage divides versus arid corridors on genetic structure and demography of a widespread freshwater turtle, Emydura macquarii krefftii, from Australia.Crossref | GoogleScholarGoogle Scholar | 25035802PubMed |

Unmack, P. J. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography 28, 1053–1089.
Biogeography of Australian freshwater fishes.Crossref | GoogleScholarGoogle Scholar |

Unmack, P. J., and Dowling, T. E. (2010). Biogeography of the genus Craterocephalus (Teleostei: Atherinidae) in Australia. Molecular Phylogenetics and Evolution 55, 968–984.
Biogeography of the genus Craterocephalus (Teleostei: Atherinidae) in Australia.Crossref | GoogleScholarGoogle Scholar | 20172031PubMed |

Unmack, P. J., Bagley, J. C., Adams, M., Hammer, M. P., and Johnson, J. B. (2012). Molecular phylogeny and phylogeography of the Australian freshwater fish genus Galaxiella, with an emphasis on dwarf galaxias (G. pusilla). PLoS ONE 7, e38433.
Molecular phylogeny and phylogeography of the Australian freshwater fish genus Galaxiella, with an emphasis on dwarf galaxias (G. pusilla).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1ertrk%3D&md5=af5a51355f7b6f05ce44dbf61c5b2e1eCAS | 22693638PubMed |

Walker, D. E., and Avise, J. C. (1998). Principles of phylogeography as illustrated by freshwater and terrestrial turtles in the southeastern United States. Annual Review of Ecology and Systematics 29, 23–58.
Principles of phylogeography as illustrated by freshwater and terrestrial turtles in the southeastern United States.Crossref | GoogleScholarGoogle Scholar |

Wellman, P. (1979). On the cainozoic uplift of the southeastern Australian highland. Journal of the Geological Society of Australia 26, 1–9.
On the cainozoic uplift of the southeastern Australian highland.Crossref | GoogleScholarGoogle Scholar |

Zamudio, K. R., and Greene, H. W. (1997). Phylogeography of the bushmaster (Lachesis tnuta: Viperidae): implications for neotropical biogeography, systematics, and conservation. Biological Journal of the Linnean Society. Linnean Society of London 62, 421–442.
Phylogeography of the bushmaster (Lachesis tnuta: Viperidae): implications for neotropical biogeography, systematics, and conservation.Crossref | GoogleScholarGoogle Scholar |