Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Sediment resuspension, salinity and temperature affect the plankton community of a shallow coastal lake

Reglindis F. Zehrer A , Carolyn W. Burns A and Sabine Flöder A B
+ Author Affiliations
- Author Affiliations

A Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.

B Corresponding author. Email: sfloeder@yahoo.com

Marine and Freshwater Research 66(4) 317-328 https://doi.org/10.1071/MF13221
Submitted: 18 August 2013  Accepted: 20 June 2014   Published: 19 November 2014

Abstract

Climate change is predicted to cause an increasing frequency of storm tides, rising sea levels and water temperatures, and altered precipitation and run-off. Such changes are likely to influence turbidity, salinity and temperature regimes of coastal aquatic ecosystems. To determine possible effects on plankton communities of these ecosystems, we combined feeding experiments with a monitoring study of tidally influenced, polymictic Lake Waihola (New Zealand). The feeding experiments were carried out using dominant Daphnia carinata, and important taxa of heterotrophic nanoflagellates (HNF) and ciliates. The field study encompassed the entire planktonic food web. Moderate levels of turbidity and salinity affected clearance and ingestion rates of D. carinata, HNF and oligotrich ciliates in our feeding experiments. Redundancy analysis identified sediment resuspension, salinity and temperature as important factors affecting the plankton communities in Lake Waihola. A wide variety of biota was affected by sediment resuspension and temperature. Fewer species responded to salinity, most likely due to unusually low salinities throughout the monitoring period. If global warming results in altered turbidity, salinity or temperature regimes in coastal aquatic ecosystems changes might be expected in the structure of their plankton communities, with potential consequences throughout the food web.

Additional keywords: climate change, coastal aquatic ecosystems, plankton community composition.


References

Arruda, J. A., Marzolf, G. R., and Faulk, R. T. (1983). The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64, 1225–1235.
The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs.Crossref | GoogleScholarGoogle Scholar |

Bayly, I. A. E. (1965). Ecological studies on the planktonic copepoda of the Brisbane River estuary with special reference to Gladioferens pectinatus Brady (Calanoida). Australian Journal of Marine and Freshwater Research 16, 315–350.

Brucet, S., Boix, D., Nathansen, L. W., Quintana, X. D., Jensen, E., Balayla, D., Meerhoff, M., and Jeppesen, E. (2012). Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PLoS ONE 7, e30877.
Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs12kt74%3D&md5=5b03324076bd3cc0e824bd2565e86abdCAS | 22393354PubMed |

Burgmer, T. (2009). Effects of climate variability and physical forcing on the diversity of aquatic organisms. Ph.D. thesis, Universität zu Köln.

Burgmer, T., Hillebrand, H., and Pfenninger, M. (2007). Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103.
Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s%2Fht1Whtw%3D%3D&md5=55c801fdafba1f714e60853adf6af345CAS | 16964502PubMed |

Burns, C. W., and Schallenberg, M. (1996). Relative impacts of copepods, cladocerans, and nutrients on the microbial food web of a mesotrophic lake. Journal of Plankton Research 18, 683–714.
Relative impacts of copepods, cladocerans, and nutrients on the microbial food web of a mesotrophic lake.Crossref | GoogleScholarGoogle Scholar |

Burns, C. W., and Schallenberg, M. (2001). Calanoid copepods versus cladocerans: consumer effects on protozoa in lakes of different trophic status. Limnology and Oceanography 46, 1558–1565.
Calanoid copepods versus cladocerans: consumer effects on protozoa in lakes of different trophic status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVSkurs%3D&md5=eecb07bafca0cde70ff890129b3c4493CAS |

Cai, W., Shi, G., Cowan, T., Bi, D., and Ribbe, J. (2005). The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming. Geophysical Research Letters 32, L23706.
The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming.Crossref | GoogleScholarGoogle Scholar |

Claps, M. C., Gabellone, N. A., and Benítez, H. H. (2011). Seasonal changes in the vertical distribution of rotifers in a eutrophic shallow lake with contrasting states of clear and turbid water. Zoological Studies 50, 454–465.

Cortese, G., Dunbar, G. B., Carter, L., Scott, G., Bostock, H., Bowen, M., Crundwell, M., Hayward, B. W., Howard, W., Martínez, J. I., Moy, A., Neil, H., Sabaa, A., and Sturm, A. (2013). Southwest Pacific Ocean response to a warmer world: insights from Marine Isotope Stage 5e. Paleoceanography 28, 585–598.
Southwest Pacific Ocean response to a warmer world: insights from Marine Isotope Stage 5e.Crossref | GoogleScholarGoogle Scholar |

DeNicola, D. M. (1996). Periphyton responses to temperature at different ecological levels. In ‘Algal Ecology’. (Eds R. J. Stevenson, M. L. Bothwell, and R. L. Lowe.) pp. 149–181. (Academic Press: San Diego, CA.)

Descamps-Julien, B., and Gonzalez, A. (2005). Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815–2824.
Stable coexistence in a fluctuating environment: an experimental demonstration.Crossref | GoogleScholarGoogle Scholar |

Downs, T. M., Schallenberg, M., and Burns, C. W. (2008). Responses of lake phytoplankton to micronutrient enrichment: a study in two New Zealand lakes and an analysis of published data. Aquatic Sciences 70, 347–360.
Responses of lake phytoplankton to micronutrient enrichment: a study in two New Zealand lakes and an analysis of published data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmslKltA%3D%3D&md5=44ec81d72106366c75e768194173e878CAS |

Drake, J. L., Carpenter, E. J., Cousins, M., Nelson, K. L., Guido-Zarate, A., and Loftin, K. (2010). Effects of light and nutrients on seasonal phytoplankton succession in a temperate eutrophic coastal lagoon. Hydrobiologia 654, 177–192.
Effects of light and nutrients on seasonal phytoplankton succession in a temperate eutrophic coastal lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqt7%2FF&md5=6b35656c63aae1f73331760045c74c8cCAS |

Edwards, M., and Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884.
Impact of climate change on marine pelagic phenology and trophic mismatch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslCnu7k%3D&md5=3ece876586b61afee4ab62b61c287e94CAS | 15318219PubMed |

Eggleton, J., and Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International 30, 973–980.
A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFWgurY%3D&md5=4fb0dbf5bca10d9d0274e5674d6d1569CAS | 15196845PubMed |

Faithfull, C. L., and Burns, C. W. (2006). Effects of salinity and source of inocula on germination of Anabaena akinetes from a tidally influenced lake. Freshwater Biology 51, 705–716.
Effects of salinity and source of inocula on germination of Anabaena akinetes from a tidally influenced lake.Crossref | GoogleScholarGoogle Scholar |

Flöder, S., and Burns, C. W. (2004). Phytoplankton diversity of shallow tidal lakes: influence of periodic salinity changes on diversity and species number of a natural assemblage. Journal of Phycology 40, 54–61.
Phytoplankton diversity of shallow tidal lakes: influence of periodic salinity changes on diversity and species number of a natural assemblage.Crossref | GoogleScholarGoogle Scholar |

Flöder, S., Jaschinski, S., Wells, G., and Burns, C. W. (2010). Dominance and compensatory growth in phytoplankton communities under salinity stress. Journal of Experimental Marine Biology and Ecology 395, 223–231.
Dominance and compensatory growth in phytoplankton communities under salinity stress.Crossref | GoogleScholarGoogle Scholar |

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248–2251.
Effects of size and temperature on metabolic rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFCrtrk%3D&md5=0c3e383e79f2565254e6311c899c95dbCAS | 11567137PubMed |

Gliwicz, Z. M. (1986). Suspended clay concentration controlled by filter-feeding zooplankton in a tropical reservoir. Nature 323, 330–332.
Suspended clay concentration controlled by filter-feeding zooplankton in a tropical reservoir.Crossref | GoogleScholarGoogle Scholar |

Hall, C. J., and Burns, C. W. (2001). Effects on salinity and temperature on survival and reproduction of Boeckella hamata (Copepoda: Calanoida) from a periodically brackish lake. Journal of Plankton Research 23, 97–103.
Effects on salinity and temperature on survival and reproduction of Boeckella hamata (Copepoda: Calanoida) from a periodically brackish lake.Crossref | GoogleScholarGoogle Scholar |

Hall, C. J., and Burns, C. W. (2002). Effects of temperature and salinity on the survival and egg production of Gladioferens pectinatus Brady (Copepoda: Calanoida). Estuarine, Coastal and Shelf Science 55, 557–564.
Effects of temperature and salinity on the survival and egg production of Gladioferens pectinatus Brady (Copepoda: Calanoida).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Kmsb4%3D&md5=ac7397467b75f90c7d4e90a8d1b96f90CAS |

Hall, C. J., and Burns, C. W. (2003). Responses of crustacean zooplankton to seasonal and tidal salinity changes in the coastal Lake Waihola, New Zealand. New Zealand Journal of Marine and Freshwater Research 37, 31–43.
Responses of crustacean zooplankton to seasonal and tidal salinity changes in the coastal Lake Waihola, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Hamilton, D. P., and Mitchell, S. F. (1996). An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317, 209–220.
An empirical model for sediment resuspension in shallow lakes.Crossref | GoogleScholarGoogle Scholar |

Hamilton, D. P., and Mitchell, S. F. (1997). Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 38, 159–168.
Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes.Crossref | GoogleScholarGoogle Scholar |

Haney, J. F., and Hall, D. J. (1973). Sugar-coated Daphnia: a preservation technique for Cladocera. Limnology and Oceanography 18, 331–333.
Sugar-coated Daphnia: a preservation technique for Cladocera.Crossref | GoogleScholarGoogle Scholar |

Hansen, P. S., Philips, E. J., and Aldridge, F. J. (1997). The effects of sediment resuspension on phosphorus available for algal growth in a shallow subtropical lake, Lake Okeechobee. Lake and Reservoir Management 13, 154–159.
The effects of sediment resuspension on phosphorus available for algal growth in a shallow subtropical lake, Lake Okeechobee.Crossref | GoogleScholarGoogle Scholar |

Hargrave, B. T. (1972). Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnology and Oceanography 17, 583–596.
Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsV2msLw%3D&md5=133a3481c87c1c7429eae586482240c1CAS |

Hart, R. C. (1999). On the limnology of Spioenkop, a turbid reservoir on the upper Thukela River, with particular reference to the structure and dynamics of its plankton community. Water S.A. 25, 519–528.
| 1:CAS:528:DyaK1MXnslyqs7s%3D&md5=1c7d79bd094198d8831cdbf879e330afCAS |

Helleström, T. (1991). The effect of resuspension on algal production in a shallow lake. Hydrobiologia 213, 183–190.
The effect of resuspension on algal production in a shallow lake.Crossref | GoogleScholarGoogle Scholar |

Hennessy, K., Fitzharris, B., Bates, B. C., Harvey, N., Howden, S. M., Hughes, L., Salinger, J., and Warrick, R. (2007). Australia and New Zealand. In ‘Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson.) pp. 507–540. (Cambridge University Press: Cambridge, UK.)

Hill, K. L., Rintoul, S. R., Ridgway, K. R., and Oke, P. R. (2011). Decadal changes in the South Pacific western boundary current system revealed in observations and ocean state estimates. Journal of Geophysical Research 116, C01009.
Decadal changes in the South Pacific western boundary current system revealed in observations and ocean state estimates.Crossref | GoogleScholarGoogle Scholar |

Hogg, I. D., and Williams, D. D. (1996). Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77, 395–407.
Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation.Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2000). Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15, 56–61.
Biological consequences of global warming: is the signal already apparent?Crossref | GoogleScholarGoogle Scholar |

Jiang, L., and Morin, P. J. (2007). Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. Journal of Animal Ecology 76, 660–668.
Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities.Crossref | GoogleScholarGoogle Scholar | 17584371PubMed |

Jiang, W., Liu, Z., Guo, L., Chen, F., and Song, X. (2010). Experimental study on the effect of sediment resuspension on zooplankton community. Journal of Lake Sciences 22, 557–562.

Jöhnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M., and Stroom, J. (2008). Summer heat waves promote blooms of harmful cyanobacteria. Global Change Biology 14, 495–512.
Summer heat waves promote blooms of harmful cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Kirk, K. L. (1991). Suspended clay reduces Daphnia feeding rate: behavioral mechanisms. Freshwater Biology 25, 357–365.
Suspended clay reduces Daphnia feeding rate: behavioral mechanisms.Crossref | GoogleScholarGoogle Scholar |

Kirst, G. O. (1989). Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology 40, 21–53.

Levine, S. N., Zehrer, R. F., and Burns, C. W. (2005). Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshwater Biology 50, 1515–1536.
Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Li, W. K. W., and Harrison, W. G. (2008). Propagation of an athmospheric climate signal to phytoplankton in a small marine basin. Limnology and Oceanography 53, 1734–1745.
Propagation of an athmospheric climate signal to phytoplankton in a small marine basin.Crossref | GoogleScholarGoogle Scholar |

Liljendahl-Nurminen, A., Horppila, J., and Lampert, W. (2008). Physiological and visual refuges in a metalimnion: an experimental study of effects of clay turbidity and an oxygen minimum on fish predation. Freshwater Biology 53, 945–951.
Physiological and visual refuges in a metalimnion: an experimental study of effects of clay turbidity and an oxygen minimum on fish predation.Crossref | GoogleScholarGoogle Scholar |

Lind, O. T., and Davaloslind, L. (1991). Association of turbidity and organic-carbon with bacterial abundance and cell size in a large, turbid, tropical lake. Limnology and Oceanography 36, 1200–1208.
Association of turbidity and organic-carbon with bacterial abundance and cell size in a large, turbid, tropical lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtFejsbk%3D&md5=eb848208959339e992f3bfffa5fe9920CAS |

López-Urrutia, A., San Martin, E., Harris, R. P., and Irigoien, X. (2006). Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences of the United States of America 103, 8739–8744.
Scaling the metabolic balance of the oceans.Crossref | GoogleScholarGoogle Scholar | 16731624PubMed |

Pechen, G. A. (1965). Produktsiya vetvistousykh rakoobraznykh ozernogo zooplanktona. Gidrobiologicheskii Zhurnal (Kiev) 1, 19–26.

Pollard, A. I., Gonzalez, M. J., Vanni, M. J., and Headworth, J. L. (1998). Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. Hydrobiologia 387, 215–223.
Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir.Crossref | GoogleScholarGoogle Scholar |

Porter, K. G., and Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25, 943–948.
The use of DAPI for identifying and counting aquatic microflora.Crossref | GoogleScholarGoogle Scholar |

Redden, A. M., and Rukminasari, N. (2008). Effects of increases in salinity on phytoplankton in the Broadwater of the Myall Lakes, NSW, Australia. Hydrobiologia 608, 87–97.
Effects of increases in salinity on phytoplankton in the Broadwater of the Myall Lakes, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGgtrc%3D&md5=925879e45d8cc0723f5c90374915fd58CAS |

Remane, A., and Schlieper, C. (1971). ‘Biology of Brackish Water.’ (E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart.)

Rijstenbil, J. W. (1987). Phytoplankton composition of stagnant and tidal ecosystems in relation to salinity, nutrients, light and turbulence. Netherlands Journal of Sea Research 21, 113–123.
Phytoplankton composition of stagnant and tidal ecosystems in relation to salinity, nutrients, light and turbulence.Crossref | GoogleScholarGoogle Scholar |

Rippingale, R. J., and Hodgkin, E. P. (1974). Population growth of a copepod Gladioferens imparipes Thomson. Australian Journal of Marine and Freshwater Research 25, 351–360.
Population growth of a copepod Gladioferens imparipes Thomson.Crossref | GoogleScholarGoogle Scholar |

Schallenberg, M., and Burns, C. W. (2004). Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients, and algal entrainment. Freshwater Biology 49, 143–159.
Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients, and algal entrainment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVGqtbk%3D&md5=10e07020fb7397743676567de53ab01bCAS |

Schallenberg, M., Hall, C. J., and Burns, C. W. (2003). Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Marine Ecology Progress Series 251, 181–189.
Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes.Crossref | GoogleScholarGoogle Scholar |

Schelske, C. L., Carrick, H. J., and Aldridge, F. J. (1995). Can wind induced resuspension of meroplankton affect phytoplankton dynamics? Journal of the North American Benthological Society 14, 616–630.
Can wind induced resuspension of meroplankton affect phytoplankton dynamics?Crossref | GoogleScholarGoogle Scholar |

Sherr, B. F., Sherr, E. B., and Pedrós-Álio, C. (1989). Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Marine Ecology Progress Series 54, 209–219.
Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water.Crossref | GoogleScholarGoogle Scholar |

Shurin, J. B., Winder, M., Adrian, R., Keller, W., Matthews, B., Paterson, A. M., Paterson, M. J., Pinel-Alloul, B., Rusak, J. A., and Yan, N. D. (2010). Environmental stability and lake zooplankton diversity – contrasting effects of chemical and thermal variability. Ecology Letters 13, 453–463.
Environmental stability and lake zooplankton diversity – contrasting effects of chemical and thermal variability.Crossref | GoogleScholarGoogle Scholar | 20100243PubMed |

Sommer, U., and Lengfellner, K. (2008). Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology 14, 1199–1208.
Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom.Crossref | GoogleScholarGoogle Scholar |

Sommer, U., Gliwicz, Z. M., Lampert, W., and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fuer Hydrobiologie 106, 433–471.

Stoner, L. C., and Dunham, P. B. (1970). Regulation of cellular osmolarity and volume in Tetrahymena. The Journal of Experimental Biology 53, 391–399.
| 1:STN:280:DyaE3M%2FjslaisA%3D%3D&md5=3b9162665643d0990d19580c6d94cc6cCAS | 5481665PubMed |

Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnolologie 9, 1–39.

Vannote, R. L., and Sweeney, B. W. (1980). Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115, 667–695.
Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities.Crossref | GoogleScholarGoogle Scholar |

Venice System (1958). Symposium on the classification of brackish waters. Oikos 9, 311–312.
Symposium on the classification of brackish waters.Crossref | GoogleScholarGoogle Scholar |

Wetzel, R.G. (1990). Land–water interfaces: metabolic and limnological regulators. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24, 6–24.

Wetzel, R. G., and Likens, G. E. (2000). ‘Limnological Analyses’, 3rd edn. (Springer: New York.)

Weyhenmeyer, G. A., Blenckner, T., and Pettersson, K. (1999). Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44, 1788–1792.
Changes of the plankton spring outburst related to the North Atlantic Oscillation.Crossref | GoogleScholarGoogle Scholar |

Wiafe, G., and Frid, C. L. J. (1996). Short-term temporal variation in coastal zooplankton communities: the relative importance of physical and biological mechanisms. Journal of Plankton Research 18, 1485–1501.
Short-term temporal variation in coastal zooplankton communities: the relative importance of physical and biological mechanisms.Crossref | GoogleScholarGoogle Scholar |

Winder, M., Reuter, J. E., and Schladow, S. G. (2009). Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society of London. B – Biological Sciences 276, 427–435.
Lake warming favours small-sized planktonic diatom species.Crossref | GoogleScholarGoogle Scholar |

Wolfinbarger, W. C. (1999). Influences of biotic and abiotic factors on seasonal succession of zooplankton in Hugo Reservoir, Oklahoma, USA. Hydrobiologia 400, 13–31.
Influences of biotic and abiotic factors on seasonal succession of zooplankton in Hugo Reservoir, Oklahoma, USA.Crossref | GoogleScholarGoogle Scholar |