Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Genetic population structure and recruitment patterns of three sympatric shallow-water penaeid prawns in Ungwana Bay, Kenya, with implication for fisheries management

Thomas K. Mkare A C , Sophie von der Heyden A , Johan C. Groeneveld B and Conrad A. Matthee A D
+ Author Affiliations
- Author Affiliations

A Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.

B Oceanographic Research Institute, PO Box 10712, Marine Parade, 4056 Durban, South Africa.

C Present Address: Kenya Marine and Fisheries Research Institute, Marine and Coastal Division, PO Box 81651–80100, Mombasa, Kenya.

D Corresponding author. Email: cam@sun.ac.za

Marine and Freshwater Research 65(3) 255-266 https://doi.org/10.1071/MF13047
Submitted: 15 February 2013  Accepted: 22 July 2013   Published: 18 October 2013

Abstract

Penaeid prawns in Ungwana Bay, Kenya, are heavily exploited by artisanal fishers and industrial bottom trawlers. Human activities in mangrove and estuarine areas may affect prawn nursery habitats and influence juvenile recruitment to fished areas, therefore it was important to investigate recruitment patterns in the bay. To test the hypotheses that single genetic stocks exist, we utilised a combination of mtDNA sequence and microsatellite data. Three dominant sympatric species, Penaeus monodon, Fenneropenaeus indicus and Metapenaeus monoceros were targeted. Sample sites were chosen to represent the bulk of fishery activities, and included estuarine juveniles and offshore adults. An exceptionally high mtDNA haplotype diversity, coupled with low nucleotide diversity was observed for all three species and there was no genetic differentiation among sampling sites. Genetic panmixia was confirmed by the microsatellite analyses of P. monodon. Juveniles that recruit to adult populations in Ungwana Bay most likely originate from local estuaries, and conservation of the prawn nursery habitats along the edges of the bay is advocated. Each of the three species represents a single management unit, and the identification of spatial management strategies to mitigate resource-user conflicts should rather consider other ecological and socio-economic factors than the genetic delineation of stocks.

Additional keywords: Fenneropenaeus indicus, fisheries management, Metapenaeus monoceros, microsatellite, mtDNA, Penaeus monodon.


References

Addison, J. A., and Hart, M. W. (2005). Spawning, copulation and inbreeding coefficients in marine invertebrates. Biology Letters 1, 450–453.
Spawning, copulation and inbreeding coefficients in marine invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jhtVKqsg%3D%3D&md5=6e23d0d20d34cca3d649812cb98b3c25CAS | 17148230PubMed |

Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A., and Ryman, N. (2008). Genetic effects of harvest on wild animal populations. Trends in Ecology & Evolution 23, 327–337.
Genetic effects of harvest on wild animal populations.Crossref | GoogleScholarGoogle Scholar |

Baldwin, J. D., Bass, A. L., Bowen, B. W., and Clark, W. H. (1998). Molecular Phylogeny and Biogeography of the Marine Shrimp Penaeus. Molecular Phylogenetics and Evolution 10, 399–407.
Molecular Phylogeny and Biogeography of the Marine Shrimp Penaeus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlKmtL0%3D&md5=88389c678bee3a9650409424096b7607CAS | 10051392PubMed |

Barluenga, M., Stölting, K. N., Salzburger, W., Muschick, M., and Meyer, A. (2006). Evidence for sympatric speciation? Nature 439, 719–723.
Evidence for sympatric speciation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyktrs%3D&md5=a5a9130ebe7091f5ebf8446b5c348be0CAS | 16467837PubMed |

Benzie, J. A. H. M., Ballment, E., Forbes, A. T., Demetriades, N. T., Sugama, K., and Haryanti, M. S. (2002). Mitochondrial DNA variation in Indo–Pacific populations of the giant tiger prawn, Penaeus monodon. Molecular Ecology 11, 2553–2569.
Mitochondrial DNA variation in Indo–Pacific populations of the giant tiger prawn, Penaeus monodon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpsl2msLw%3D&md5=0ac26985a8dbf4045bb74ad431843007CAS |

Brooker, A. L., Benzie, J. A. H., Blair, D., and Versini, J. J. (2000). Population structure of the giant tiger prawn Penaeus monodon in Australian waters, determined using microsatellite markers. Marine Biology 136, 149–157.
Population structure of the giant tiger prawn Penaeus monodon in Australian waters, determined using microsatellite markers.Crossref | GoogleScholarGoogle Scholar |

Chakraborty, R., Kimmel, M., Stivers, D. N., Davison, L. J., and Deka, R. (1997). Relative mutation rates at di–, tri–, and tetranucleotide microsatellite loci. Proceedings of the National Academy of Sciences of the United States of America 94, 1041–1046.
Relative mutation rates at di–, tri–, and tetranucleotide microsatellite loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVyht70%3D&md5=0950242e6549a06cf951ded5ba2359d6CAS | 9023379PubMed |

Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Genetics 10, 195–205.
| 1:CAS:528:DC%2BD1MXhvFGlu7s%3D&md5=eae5738521516d0ddd46c03be94935f8CAS | 19204717PubMed |

Chen, H., Strand, M., Norenburg, J. L., Sun, S., Kajihara, H., Chernyshev, A. V., Maslakova, S. A., and Sundberg, P. (2010). Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans (Nemertea). PLoS ONE 5, e12885.
Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans (Nemertea).Crossref | GoogleScholarGoogle Scholar | 20877627PubMed |

Chu, K. H., Li, C. P., Tam, Y. K., and Lavery, S. (2003). Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Molecular Ecology Notes 3, 120–122.
Application of mitochondrial control region in population genetic studies of the shrimp Penaeus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVyitrk%3D&md5=e2563747e38df02035e7a040e013f459CAS |

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=c73130a339a4621a6df085b611bcf2eeCAS | 11050560PubMed |

Coyle, T. (1998). Stock identification and fisheries management: the importance of using several methods in a stock identification study. In ‘Taking stock: defining and managing shared resources’. (Ed. D. A. Hancock.) pp. 173–182. (Australian Society for Fishery Biology: Sydney.).

Dall, W., Hill, B. J., Rothlisberg, P. C., and Staples, D. J. (1990). The biology of Penaeidae. Advances in Marine Biology 27, 1–484.

De Freitas, A. J. (1986). Selection of nursery areas by six southeast African Penaeidae. Estuarine, Coastal and Shelf Science 23, 901–908.
Selection of nursery areas by six southeast African Penaeidae.Crossref | GoogleScholarGoogle Scholar |

Duda, T. F., and Palumbi, S. R. (1999). Population structure of the black tiger prawn, Penaeus monodon among Western Indian Ocean and Western Pacific populations. Marine Biology 134, 705–710.
Population structure of the black tiger prawn, Penaeus monodon among Western Indian Ocean and Western Pacific populations.Crossref | GoogleScholarGoogle Scholar |

Dudgeon, C. L., Blower, D. C., Broderick, D., Giles, J. L., Holmes, B. J., Kashiwagi, T., Kruck, N. C., Morgan, J. A. T., Tillett, B. J., and Ovenden, J. R. (2012). A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. Journal of Fish Biology 80, 1789–1843.
A review of the application of molecular genetics for fisheries management and conservation of sharks and rays.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rksVyjsA%3D%3D&md5=4ca93869927b81ab4435a200f41fae17CAS | 22497408PubMed |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=940504aeb995dd3cf6a845153ac85f2dCAS | 15969739PubMed |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.11: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=a34b11451ded86925196f3b5d358655bCAS |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=7fe3c3ecd798d1d90d34bddb6113584fCAS | 1644282PubMed |

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure: Extensions to linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
| 1:CAS:528:DC%2BD3sXnvF2ntrk%3D&md5=0385e90126233b1c49dc13bb2feea2e8CAS | 12930761PubMed |

FAO (2006). Review of the state of world marine capture fisheries management: Indian Ocean. FAO Fisheries Technical Paper 488. Food and Agriculture Organization, Rome.

Faurby, S., and Barber, P. H. (2012). Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Molecular Ecology 21, 3419–3432.
Theoretical limits to the correlation between pelagic larval duration and population genetic structure.Crossref | GoogleScholarGoogle Scholar | 22574811PubMed |

Fennessy, S. T., Mwatha, G. K., and Thiele, W. (2004) Report of the regional workshop on approaches to reducing shrimp trawl bycatch in the Western Indian Ocean. Mombasa, Kenya, 13–15 April 2003. FAO Fisheries Report. No. 734. 49 pp. FAO 2004, Rome.

Fulanda, B. (2003). Shrimp trawling in Ungwana Bay: a threat to fishery resources. In ‘Recent advances in coastal ecology: studies from Kenya. (Eds J. Hoorweg and N. Muthiga.) pp. 233–242. (PrintPartners Ipskamp BV: Enschede.).

Fulanda, B., Munga, C., Ohtomi, J., Osore, M., Mugo, R., and Hossain, M. D. Y. (2009). The structure and evolution of the coastal migrant fishery of Kenya. Ocean and Coastal Management 52, 459–466.
The structure and evolution of the coastal migrant fishery of Kenya.Crossref | GoogleScholarGoogle Scholar |

Fulanda, B., Ohtomi, J., Mueni, E., and Kimani, E. (2011). Fishery trends, resource-use and management system in the Ungwana Bay fishery Kenya. Ocean and Coastal Management 54, 401–414.
Fishery trends, resource-use and management system in the Ungwana Bay fishery Kenya.Crossref | GoogleScholarGoogle Scholar |

Gilg, M. R., and Hilbish, T. J. (2003). The geography of marine larval dispersal: coupling genetics with fine–scale physical oceanography. Ecology 84, 2989–2998.
The geography of marine larval dispersal: coupling genetics with fine–scale physical oceanography.Crossref | GoogleScholarGoogle Scholar |

Gopal, K., Tolley, K. A., Groeneveld, J. C., and Matthee, C. A. (2006). Mitochondrial DNA variation in spiny lobster Palinurus delagoae suggests genetically structured populations in the southwestern Indian Ocean. Marine Ecology Progress Series 319, 191–198.
Mitochondrial DNA variation in spiny lobster Palinurus delagoae suggests genetically structured populations in the southwestern Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1enu7%2FP&md5=f404498db629ff0267f5d0de6e9f94caCAS |

Goudet, J. (2002). ‘FSTAT, a program to estimate and test gene diversities and fixation indices (ver. 2.9.3.2).’ Available at http://www2.unil.ch/popgen/softwares/fstat.htm [verified 12 August 2013]

Government of Kenya (2010). The prawn fishery management plan 2010. Kenya gazette supplement No.13. Legal notice No. 20. 8 pp.

Groeneveld, J. C., von der Heyden, S., and Matthee, C. A. (2012). High connectivity and lack of mtDNA differentiation among two previously recognized spiny lobster species in the southern Atlantic and Indian Oceans. Marine Biology Research 8, 764–770.
High connectivity and lack of mtDNA differentiation among two previously recognized spiny lobster species in the southern Atlantic and Indian Oceans.Crossref | GoogleScholarGoogle Scholar |

Hoarau, G., Rijnsdorp, A. D., van der Veer, H. W., Stam, W. T., and Olsen, J. L. (2002). Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large–scale spatial and temporal homogeneity. Molecular Ecology 11, 1165–1176.
Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large–scale spatial and temporal homogeneity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1ehu7w%3D&md5=b411680c5797d8b9ae6f8c027d1d35d5CAS | 12074724PubMed |

Huang, B., Peakall, X. R., and Hanna, P. J. (2000). Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellites and microsatellites. Marine Biology 136, 207–216.
Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellites and microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFOltLg%3D&md5=af178779d432c4db33eb08d9d3a0be29CAS |

Iversen, S. A., Myklevol, S., Lwize, K., and Yonaz i, J. (1984). Tanzanian Marine Fish Resources in the depth regions 10–500 m investigated by R/V ‘Dr. Fridtjof Nansen’ Presented at the joint Tanzanian/Norwegian Seminar to review the marine resources of Tanzania, Mbegani Fisheries Development Centre, Tanzania, 6–8 March 1984. [Conference presentation]

Kalinowski, S. T. (2011). The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106, 625–632.
The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3os1ygtA%3D%3D&md5=84ed54886323d9df61dc13a2ca507759CAS | 20683484PubMed |

Kimura, M. (1983). ‘The neutral theory of molecular evolution.’ (Cambridge University Press, Cambridge: U.K.)

Kimura, M., and Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics 49, 725–738.
| 1:STN:280:DyaF2c7hsVyrsQ%3D%3D&md5=5a96eb0b150b2d14c83f75216d8252c7CAS | 14156929PubMed |

Kitheka, J. U., Obiero, M., and Nthenge, P. (2005). River discharge, sediment transport and exchange in the Tana estuary Kenya. Estuarine, Coastal and Shelf Science 63, 455–468.
River discharge, sediment transport and exchange in the Tana estuary Kenya.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVSrtL4%3D&md5=20093c9ff88b41ef573df92c1acb7ce2CAS |

Kong, X. Y., Li, Y. L., Shi, W., and Kong, J. (2010). Genetic variation and evolutionary demography of Fenneropenaeus chinensis populations, as revealed by the analysis of mitochondrial control region sequences. Genetics and Molecular Biology 33, 379–389.
Genetic variation and evolutionary demography of Fenneropenaeus chinensis populations, as revealed by the analysis of mitochondrial control region sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVeltLk%3D&md5=2796bb76e477d0cf0837a013bfcdb95aCAS | 21637498PubMed |

Kumar, C. P., John, B. A., Khan, S. A., Lyla, P. S., and Jalal, K. C. A. (2012). Limit of DNA barcode in delineating Penaeus monodon and in its developing stages. Sains Malaysiana 41, 1527–1533.
| 1:CAS:528:DC%2BC3sXltVantb8%3D&md5=eb8f505b0d594c4a2d1f67fe01b3edc1CAS |

Leffler, E. M., Bullaughey, K., Matute, D. R., Meyer, W. K., Se’gurel, L., Venkat, A., Andolfatto, P., and Przeworski, M. (2012). Revisiting an old riddle: What determines genetic diversity levels within species? PLoS Biology 10, e1001388.
Revisiting an old riddle: What determines genetic diversity levels within species?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSjtLzO&md5=9ac4e5c693c61abd0df8bac5eba12932CAS | 22984349PubMed |

Macia, A. (2004). Juvenile penaeid shrimp density, spatial distribution and size composition in four adjacent habitats within a mangrove–fringed bay on Inhaca Island, Mozambique. Western Indian Ocean Journal of Marine Science 3, 163–178.

Mwatha, G. (2005). Stock assessment and population dynamics of penaeid prawns in the prawn trawling grounds of Malindi-Ungwana bay: the challenges of managing the prawn fishery in Kenya. WIOMSA MARG 1 Project report no: WIOMSA/MARG-I/2005 – 06.

Matthee, C. A., Cockcroft, A. C., Gopal, K., and von der Heyden, S. (2007). Mitochondrial DNA variation of the west-coast rock lobster, Jasus lalandii: marked genetic diversity differences among sampling sites. Marine and Freshwater Research 58, 1130–1135.
Mitochondrial DNA variation of the west-coast rock lobster, Jasus lalandii: marked genetic diversity differences among sampling sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVantLbL&md5=50e0538bf2de18c835711ed4e060bc33CAS |

McClanahan, T. R. (1988). Seasonality in East Africa’s coastal waters. Marine Ecology Progress Series 44, 191–199.
Seasonality in East Africa’s coastal waters.Crossref | GoogleScholarGoogle Scholar |

McMillen-Jackson, A., and Bert, T. M. (2003). Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States. Molecular Ecology 12, 2895–2905.
Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srltFCitw%3D%3D&md5=ea1ac3ebcc68b65cfd012f400c3e31c2CAS | 14629371PubMed |

McMillen-Jackson, A., and Bert, T. M. (2004). Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. Journal of Crustacean Biology 24, 101–109.
Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum.Crossref | GoogleScholarGoogle Scholar |

Mora, C., and Sale, P. F. (2002). Are populations of coral reef fish open or closed? Trends in Ecology & Evolution 17, 422–428.
Are populations of coral reef fish open or closed?Crossref | GoogleScholarGoogle Scholar |

Morin, P. A., Leduc, R. G., Archer, F. I., Martien, K. K., Huebinger, R., Bickham, J. W., and Taylor, B. L. (2009). Significant deviations from Hardy–Weinberg equilibrium caused by low levels of genotyping errors. Molecular Ecology Resources 9, 498–504.
Significant deviations from Hardy–Weinberg equilibrium caused by low levels of genotyping errors.Crossref | GoogleScholarGoogle Scholar | 21564679PubMed |

Munga, C. N., Mwangi, S., Ong’anda, H., Ruwa, R., Manyala, J., Groeneveld, J. C., Kimani, E., and Vanreusel, A. (2013). Species composition, distribution patterns and population structure of penaeid shrimps in Malindi-Ungwana Bay, Kenya, based on experimental bottom trawl surveys. Fisheries Research 147, 93–102.
Species composition, distribution patterns and population structure of penaeid shrimps in Malindi-Ungwana Bay, Kenya, based on experimental bottom trawl surveys.Crossref | GoogleScholarGoogle Scholar |

Munga, C., Ndegwa, S., Fulanda, B., Manyala, J., Kimani, E., Ohtomi, J., and Vanreusel, A. (2012). Bottom shrimp trawling impacts on species distribution and fishery dynamics; Ungwana Bay fishery Kenya before and after the 2006 trawl ban. Fisheries Science 78, 209–219.
Bottom shrimp trawling impacts on species distribution and fishery dynamics; Ungwana Bay fishery Kenya before and after the 2006 trawl ban.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFKlurs%3D&md5=661cf78bd5894d362ff8fc4e8cfa3001CAS |

Mwaluma, J. M., Kaunda–Arara, B., and Rasowo, J. (2010). Alongshore distribution and abundance of fish larvae off the coast of Kenya. African Journal of Marine Science 32, 581–589.
Alongshore distribution and abundance of fish larvae off the coast of Kenya.Crossref | GoogleScholarGoogle Scholar |

Mwaluma, J. (2002). Zooplankton abundance, distribution and species composition in Ungwana Bay. KMFRI Technical Reports Series 12/2001, 20–23.

Mwatha, G. K. (2002). Malindi-Ungwana Bay fishery. Assessment of the prawn fishery, by-catch and resource-use conflicts and performance of turtle excluder device. Current status of trawl fishery of Malindi-Ungwana Bay. Final Report. pp. 43–68. KMFRI, Kenya Marine and Fisheries Research Institute, Mombasa.

Osore, M. K. W. (1992). A note on the zooplankton distribution and diversity in a tropical mangrove creek system, Gazi, Kenya. Hydrobiologia 247, 119–120.
A note on the zooplankton distribution and diversity in a tropical mangrove creek system, Gazi, Kenya.Crossref | GoogleScholarGoogle Scholar |

Ovenden, J. R., Peel, D., Street, R., Courtney, A. J., Hoyle, S. D., Peel, S. L., and Oodlich, H. (2007). The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus). Molecular Ecology 16, 127–138.
The genetic effective and adult census size of an Australian population of tiger prawns (Penaeus esculentus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Cltbs%3D&md5=67a80aae961d2dacdcb0e7aa90e5063eCAS | 17181726PubMed |

Palsbøll, P. J., Be’rube, ´. M., and Allendorf, F. W. (2007). Identification of management units using population genetic data. Trends in Ecology & Evolution 22, 11–16.
Identification of management units using population genetic data.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R., and Benzie, J. (1991). Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Molecular Marine Biology and Biotechnology 1, 27–34.
| 1:CAS:528:DyaK38XhsVyltr4%3D&md5=98018526f3189d50ca8ab5b27f7ee795CAS | 1669002PubMed |

Pan, Y. W., Chou, H. H., You, E. M., and Yu, H. T. (2004). Isolation and characterization of 23 polymorphic microsatellite markers for diversity and stock analysis in tiger shrimp (Penaeus monodon). Molecular Ecology Notes 4, 345–347.
Isolation and characterization of 23 polymorphic microsatellite markers for diversity and stock analysis in tiger shrimp (Penaeus monodon).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOks78%3D&md5=3f3f17ad3e97bc408d12a8786d015801CAS |

Park, S. D. E. (2001). Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D. Thesis, University of Dublin.

Pelc, R. A., Warner, R. R., and Gaines, S. D. (2009). Geographical patterns of genetic structure in marine species with contrasting life histories. Journal of Biogeography 36, 1881–1890.
Geographical patterns of genetic structure in marine species with contrasting life histories.Crossref | GoogleScholarGoogle Scholar |

Pérez Farfante, I., and Kensley, B. (1997) Penaeoid and Sergestoid shrimps and prawns of the world. Éditions du Muséum national d’Histoire naturelle, Paris, 152 pp.

Petit, R., El Mousadik, A., and Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12, 844–855.
Identifying populations for conservation on the basis of genetic markers.Crossref | GoogleScholarGoogle Scholar |

Piganeau, G., and Eyre–Walker, A. (2009). Evidence for variation in the effective population size of animal mitochondrial DNA. PLoS ONE 4, e4396.
Evidence for variation in the effective population size of animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 19198657PubMed |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=a651e5b2cca1da751d9a8c5053900888CAS | 10835412PubMed |

Ragionieri, L., Cannicci, S., Schubart, C. D., and Fratini, S. (2010). Gene flow and demographic history of the mangrove crab Neosarmatium meinerti: A case study from the Western Indian Ocean. Estuarine, Coastal and Shelf Science 86, 179–188.
Gene flow and demographic history of the mangrove crab Neosarmatium meinerti: A case study from the Western Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1aqtbvO&md5=b0b099eede6f293617d9f8c887ffc94cCAS |

Ramos–Onsins, S. E., Stranger, B. E., Mitchell–Olds, T., and Aguade, M. (2004). Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata. Genetics 166, 373–388.
Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFKjtb0%3D&md5=970379dde8f2a59fada80d7106f843f9CAS | 15020431PubMed |

Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
An exact test for population differentiation.Crossref | GoogleScholarGoogle Scholar |

Raymond, M., Vaanto, R. L., Thomas, F., Rousset, F., de Meeus, T., and Renaud, F. (1997). Heterozygote deficiency in the mussel Mytilus edulis species complex revisited. Marine Ecology Progress Series 156, 225–237.
Heterozygote deficiency in the mussel Mytilus edulis species complex revisited.Crossref | GoogleScholarGoogle Scholar |

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Roberts, C. M. (1997). Connectivity and management of Caribbean coral reefs. Science 278, 1454–1457.
Connectivity and management of Caribbean coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVGlur8%3D&md5=e0424c5406e6b56889226ae05926df20CAS | 9367956PubMed |

Rousset, F. (2008). Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8, 103–106.
Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux.Crossref | GoogleScholarGoogle Scholar | 21585727PubMed |

Schwartz, M. K., Luikart, G., and Waples, R. S. (2007). Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution 22, 25–33.
Genetic monitoring as a promising tool for conservation and management.Crossref | GoogleScholarGoogle Scholar |

Silva, I. C., Mesquita, N., and Paula, J. (2010). Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura: Sesarmidae) along an East African latitudinal gradient. Biological Journal of the Linnean Society. Linnean Society of London 99, 28–46.
Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura: Sesarmidae) along an East African latitudinal gradient.Crossref | GoogleScholarGoogle Scholar |

Sivasundar, A., and Palumbi, S. R. (2010). Life history, ecology and the biogeography of strong genetic breaks among 15 species of Pacific rockfish, Sebastes. Marine Biology 157, 1433–1452.
Life history, ecology and the biogeography of strong genetic breaks among 15 species of Pacific rockfish, Sebastes.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=4feabfd2916eb73d10bf98384eecf75bCAS | 21546353PubMed |

Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram Estimation. Genetics 132, 619–633.
| 1:CAS:528:DyaK3sXhslSrsQ%3D%3D&md5=dafecb48fbab35b8e938556cc11d8d3eCAS | 1385266PubMed |

Teske, P. R., Hamilton, H., Matthee, C. A., and Barker, N. P. (2007). Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage. BMC Evolutionary Biology 7, 138.
Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage.Crossref | GoogleScholarGoogle Scholar | 17697373PubMed |

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=9d02f84fd1683b4c4ca4923b268e3185CAS | 7984417PubMed |

Turpie, J. K., and Lamberth, S. J. (2010). Characteristics and value of the Thukela Banks crustacean and linefish fisheries, and the potential impacts of changes in river flow. African Journal of Marine Science 32, 613–624.
Characteristics and value of the Thukela Banks crustacean and linefish fisheries, and the potential impacts of changes in river flow.Crossref | GoogleScholarGoogle Scholar |

van der Elst, R. P., Groeneveld, J. C., Baloi, A. P., Marsac, F., Katonda, K. I., Ruwa, R. K., and Lane, W. L. (2009). Nine nations, one ocean: A benchmark appraisal of the South West Indian Ocean Fisheries Project (2008–2012). Ocean and Coastal Management 52, 258–267.
Nine nations, one ocean: A benchmark appraisal of the South West Indian Ocean Fisheries Project (2008–2012).Crossref | GoogleScholarGoogle Scholar |

van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=4035a5d5de8f79ac73525684ad7d6e26CAS |

van Oosterhout, C., Weetman, D., and Hutchinson, W. F. (2006). Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Molecular Ecology Notes 6, 255–256.
Estimation and adjustment of microsatellite null alleles in nonequilibrium populations.Crossref | GoogleScholarGoogle Scholar |

Visram, S., Yang, M. C., Moothien Pillay, R. M., Said, S., Henriksson, O., Grahn, M., and Chen, C. A. (2010). Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean. Marine Biology 157, 1475–1487.
Genetic connectivity and historical demography of the blue barred parrotfish (Scarus ghobban) in the western Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

von der Heyden, S., Bowie, R. C. K., Prochazka, K., Bloomer, P., Crane, N. L., and Bernard, G. (2011). Phylogeographic patterns and cryptic speciation across oceanographic barriers in South African intertidal fishes. Journal of Evolutionary Biology 24, 2505–2519.
Phylogeographic patterns and cryptic speciation across oceanographic barriers in South African intertidal fishes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbptlSlsg%3D%3D&md5=bd3fe103022d19d0e950f48ce41ae994CAS | 21910777PubMed |

Wakwabi, E. O., and Jaccarini, V. (1993). The distribution and abundance of planktonic penaeid larvae in Tudor creek, Mombasa, Kenya. Hydrobiologia 264, 185–192.
The distribution and abundance of planktonic penaeid larvae in Tudor creek, Mombasa, Kenya.Crossref | GoogleScholarGoogle Scholar |

Walther, E., Schöfl, G., Mrotzek, G., Haryanti, , Sugama, K., and Saluz, H. P. (2011). Paralogous mitochondrial control region in the giant tiger shrimp, Penaeus monodon (F.) affects population genetics inference: A cautionary tale. Molecular Phylogenetics and Evolution 58, 404–408.
Paralogous mitochondrial control region in the giant tiger shrimp, Penaeus monodon (F.) affects population genetics inference: A cautionary tale.Crossref | GoogleScholarGoogle Scholar | 21145976PubMed |

Waples, R. R., Punt, A. E., and Cope, J. M. (2008). Integrating genetic data into management of marine resources: how can we do it better? Fish and Fisheries 9, 423–449.
Integrating genetic data into management of marine resources: how can we do it better?Crossref | GoogleScholarGoogle Scholar |

Waqairatu, S. S., Dierens, L., Cowley, J. A., Dixon, T. J., Johnson, K. N., Barnes, A. C., and Li, Y. (2012). Genetic analysis of black tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands. Ecology and Evolution 2, 2057–2071.
Genetic analysis of black tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands.Crossref | GoogleScholarGoogle Scholar | 22957205PubMed |

Williams, S. T., and Benzie, J. A. H. (1998). Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo–West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution 52, 87–99.
Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo–West Pacific defined by color morphs, mtDNA, and allozyme data.Crossref | GoogleScholarGoogle Scholar |

Wright, S. (1949). The genetical structure of populations. Annals of Eugenics 15, 323–354.
The genetical structure of populations.Crossref | GoogleScholarGoogle Scholar |

You, E. M., Chiu, T. S., Liu, K. F., Tassanakajon, A., Klinbunga, S., Triwitayakorn, K., Pena, L. D., Li, Y., and Yu, H. T. (2008). Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo–Pacific region. Animal Genetics 39, 267–277.
Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo–Pacific region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslGrurs%3D&md5=97368f8819e1e9bf16479c9ec131a1d2CAS | 18454804PubMed |