Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Nutrients, chlorophyll and biotic metrics in the Rappahannock River estuary: implications of urbanisation in the Chesapeake Bay watershed, USA

M. Bala Krishna Prasad A C , Michael C. Maddox A , Aditya Sood B , Sujay Kaushal A and Raghu Murtugudde A
+ Author Affiliations
- Author Affiliations

A Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20740-3823, USA.

B International Water Management Institute, Battaramulla, Colombo, Sri Lanka.

C Corresponding author. Email: mbkprasad@gmail.com

Marine and Freshwater Research 65(6) 475-485 https://doi.org/10.1071/MF12351
Submitted: 11 December 2012  Accepted: 24 September 2013   Published: 27 March 2014

Abstract

In the Chesapeake Bay watershed, various endeavours such as the inter-state agreements and Chesapeake 2000 agreement have been implemented to improve water quality and ecological conditions, and have produced mixed results at best in various tributaries. So as to evaluate the management efforts on ecological conditions in the Rappahannock River watershed, we analysed the long-term variability in land use, nutrient content and ecological biotic metrics. It appears that the inter-annual variability in nutrient loadings and concentrations is largely influenced by changes in urbanisation and climate. Significant increases in urban development (35%) and population growth have exacerbated both point and non-point nutrient pollution in the Rappahannock River. The comparatively low N : P ratio in the tidal zone, with respect to the non-tidal zone, may be due to salinity-induced P leaching from sediments regulating the water quality along the river–estuary continuum. In addition, inter-annual variability in ecological biotic metrics demonstrates degrading ecological conditions in the Rappahannock River watershed, which are primarily due to increasing watershed urbanisation driving high nutrient loadings and altered nutrient stoichiometry.

Additional keywords: biotic indices, Chesapeake Bay, nutrients, river–estuary continuum, urbanisation.


References

Anderson, C., Sapiano, M., Prasad, M. B. K., Long, W., Brown, C., Murtugudde, R., and Tango, P. (2010). Forecasting potentially toxic diatom blooms in the Chesapeake Bay. Journal of Marine Systems 83, 127–140.
Forecasting potentially toxic diatom blooms in the Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar |

Banakar, V., Constantin de Magny, G., Jacobs, J., Murtugudde, R., Huq, A., Wood, R. J., and Colwell, R. R. (2011). Temporal and spatial variability in the distribution of Vibrio vulnificus in the Chesapeake Bay: a hindcast study. EcoHealth 8, 456–467.
Temporal and spatial variability in the distribution of Vibrio vulnificus in the Chesapeake Bay: a hindcast study.Crossref | GoogleScholarGoogle Scholar | 22302219PubMed |

Belval, D. L., and Sprague, L. A. (1999). Monitoring nutrients in the major rivers draining to Chesapeake Bay. US Geological Survey Water-Resources Investigations Report 99-4238, Richmond, VA.

Benham, B.L., Braccia, A., Mostaghimi, S., Lowery, J.B., and McClellan, P.W. (2007). Comparison of best management practice adoption between Virginia’s Chesapeake Bay Basin and southern rivers watersheds. Journal of Extension 45, 2RIB3.

Buchanan, C., Lacouture, R., Marshall, H., Olson, M., and Johnson, J. (2005). Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries. Estuaries 28, 138–159.
Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries.Crossref | GoogleScholarGoogle Scholar |

Cloern, J. E. (1999). The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquatic Ecology 33, 3–15.
The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment.Crossref | GoogleScholarGoogle Scholar |

Cohn, T. A., DeLong, L. L., Gilroy, E. J., Hirsch, R. M., and Wells, R. M. (1989). Estimating constituent loads. Water Resources Research 25, 937–942.
Estimating constituent loads.Crossref | GoogleScholarGoogle Scholar |

Cullen, J. J., Doolittle, W. F., Levin, S. A., and Li, W. K. W. (2007). Patterns and prediction in microbial oceanography. Oceanography 20, 34–46.
Patterns and prediction in microbial oceanography.Crossref | GoogleScholarGoogle Scholar |

D’Elia, C. F., Boynton, W. R., and Sanders, J. G. (2003). A watershed perspective on nutrient enrichment, science and policy in the Patuxent River, Maryland: 1960–2000. Estuaries 26, 171–185.
A watershed perspective on nutrient enrichment, science and policy in the Patuxent River, Maryland: 1960–2000.Crossref | GoogleScholarGoogle Scholar |

De Leo, G. A., and Levin, S. (1997). The multifaceted aspects of ecosystem integrity. Conservation Ecology 1, 3.

Dittmar, T., Hertkorn, N., Kattner, G., and Lara, R. J. (2006). Mangroves, a major source of dissolved organic carbon to the oceans Global Biogeochemical Cycles 20, GB1012.
Mangroves, a major source of dissolved organic carbon to the oceansCrossref | GoogleScholarGoogle Scholar |

Frazer, L. (2005). Paving paradise: the peril of impervious surfaces. Environmental Health Perspectives 113, A456–A462.
Paving paradise: the peril of impervious surfaces.Crossref | GoogleScholarGoogle Scholar | 16002362PubMed |

Fry, J. A., Coan, M. J., Homer, C. G., Meyer, D. K., and Wickham, J. D. (2009). Completion of the National Land Cover Database (NLCD) 1992–2001. Land Cover Change Retrofit product. US Geological Survey Open-file Report 2008-1379. United States Geological Survey, Reston, VA.

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vörösmarty, C. J. (2004). Nitrogen cycles: past, present and future. Biogeochemistry 70, 153–226.
Nitrogen cycles: past, present and future.Crossref | GoogleScholarGoogle Scholar |

Gong, W., Shen, J., and Hong, B. (2009). The influence of wind on the water age in the tidal Rappahannock River. Marine Environmental Research 68, 203–216.
The influence of wind on the water age in the tidal Rappahannock River.Crossref | GoogleScholarGoogle Scholar | 19586659PubMed |

Hagy, J. D., Boynton, W. R., Keefe, C. W., and Wood, K. V. (2004). Hypoxia in Chesapeake Bay, 1950–2001: long term change in relation to nutrient loading and river flow. Estuaries 27, 634–658.
Hypoxia in Chesapeake Bay, 1950–2001: long term change in relation to nutrient loading and river flow.Crossref | GoogleScholarGoogle Scholar |

Homer, C., Huang, C., Yang, L., Wylie, B., and Coan, M. (2004). Development of a 2001 national landcover database for the United States. Photogrammetric Engineering and Remote Sensing 70, 829–840.

Howarth, R. W., and Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography 51, 364–376.
Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades.Crossref | GoogleScholarGoogle Scholar |

Howarth, R. W., Swaney, D. P., Boyer, E. W., Marino, R., Jaworski, N., and Goodale, C. (2006). The influence of climate on average nitrogen export from large watersheds in the northeastern United States. Biogeochemistry 79, 163–186.
The influence of climate on average nitrogen export from large watersheds in the northeastern United States.Crossref | GoogleScholarGoogle Scholar |

Jantz, P., Goetz, S., and Jantz, C. (2005). Urbanization and the loss of resource lands in the Chesapeake Bay watershed. Environmental Management 36, 808–825.
Urbanization and the loss of resource lands in the Chesapeake Bay watershed.Crossref | GoogleScholarGoogle Scholar | 16215652PubMed |

Jordan, T. E., Cornwell, J. C., Boynton, W. R., and Anderson, J. T. (2008). Changes in phosphorus biogeochemistry along an estuarine salinity gradient: the iron conveyer belt. Limnology and Oceanography 53, 172–184.
Changes in phosphorus biogeochemistry along an estuarine salinity gradient: the iron conveyer belt.Crossref | GoogleScholarGoogle Scholar |

Kane, D. D., Gordon, S. I., Munawar, M., Charlton, M. N., and Culver, D. A. (2009). The planktonic index of biotic integrity (P-IBI): an approach for assessing lake ecosystem health. Ecological Indicators 9, 1234–1247.
The planktonic index of biotic integrity (P-IBI): an approach for assessing lake ecosystem health.Crossref | GoogleScholarGoogle Scholar |

Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M., Belt, K. T., Secor, D., Seekell, D., and Wingate, R. (2010). Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8, 461–466.
Rising stream and river temperatures in the United States.Crossref | GoogleScholarGoogle Scholar |

Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boiciurt, W. C., Brush, G., Cornwell, J. C., Fisher, T. R., Glibert, P. M., Hagy, J. D., Harding, L. W., Houde, E. D., Kimmel, D. G., Miller, W. D., Newell, R. I. E., Roman, M. R., Smith, E. M., and Stevenson, J. C. (2005). Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303, 1–29.
Eutrophication of Chesapeake Bay: historical trends and ecological interactions.Crossref | GoogleScholarGoogle Scholar |

Koroncai, R., Linker, L., Sweeney, J., and Batiuk, R. (2003). Setting and allocating the Chesapeake Bay nutrient and sediment loads: the collaborative process, technical tools, and innovative approaches. US Environmental Protection Agency, Chesapeake Bay Program Office, Annapolis, MD.

Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S., and Sallantaus, T. (2006). Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences 68, 453–468.
Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland.Crossref | GoogleScholarGoogle Scholar |

Kuo, A. Y., and Nelson, B. J. (1987). Hypoxia and salinity in Virginia estuaries. Estuaries 10, 277–283.
Hypoxia and salinity in Virginia estuaries.Crossref | GoogleScholarGoogle Scholar |

Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., and Nagy, K. L. (1994). Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta 58, 2361–2386.
Chemical weathering rate laws and global geochemical cycles.Crossref | GoogleScholarGoogle Scholar |

Llansó, R. J., Scott, L. C., and Kelley, F. S. (2002). National coastal assessment 2001. Benthic community condition in Maryland’s coastal bays. Versar Inc. for Maryland Department of Natural Resources., Annapolis.

Lopes, C. B., Lillebö, A. I., Pato, P., Dias, J. M., Rodrigues, S. M., Pereira, E., and Duarte, A. C. (2008). Input of organic carbon from Ria de Aveiro coastal lagoon to the Atlantic Ocean. Estuarine, Coastal and Shelf Science 79, 751–757.
Input of organic carbon from Ria de Aveiro coastal lagoon to the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Lowrance, R., Altier, L. S., Newbold, J. D., Schnabel, R. R., Groffman, P. M., Denver, J. M., Correll, D. L., Gilliam, J. W., Robinson, J. L., Brinsfield, R. B., Staver, K. W., Lucas, W., and Todd, A. H. (1997). Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environmental Management 21, 687–712.
Water quality functions of riparian forest buffers in Chesapeake Bay watersheds.Crossref | GoogleScholarGoogle Scholar | 9236284PubMed |

Mattsson, T., Finér, L., Kortelainen, P., and Sallantaus, T. (2003). Brook water quality and background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil Pollution 147, 275–298.
Brook water quality and background leaching from unmanaged forested catchments in Finland.Crossref | GoogleScholarGoogle Scholar |

Maulood, B. K., Alobaidy, A. H. M. J., Alsaboonchi, A., Abid, H. S., and Alobaidy, G. S. (2011). Phytoplankton index of biological integrity (P-IBI) in several marshes, southern Iraq. Journal of Environmental Protection 2, 387–394.
Phytoplankton index of biological integrity (P-IBI) in several marshes, southern Iraq.Crossref | GoogleScholarGoogle Scholar |

Meng, H., Sexton, A. M., Maddox, M. C., Sood, A., Brown, C. W., Ferraro, R. R., and Murtugudde, M. (2010). Modeling Rappahannock River basin using SWAT – pilot for Chesapeake Bay watershed. Applied Engineering in Agriculture 26, 795–805.

Meybeck, M. (1987). Global weathering from surficial rocks estimated from river dissolved loads. American Journal of Science 287, 401–428.
Global weathering from surficial rocks estimated from river dissolved loads.Crossref | GoogleScholarGoogle Scholar |

Miller, W. D., Harding, L. W., and Adolf, J. E. (2006). Hurricane Isabel generated an unusual fall bloom in Chesapeake Bay. Geophysical Research Letters 33, L06612.

Murtugudde, R. (2010). Observational needs for sustainable coastal prediction and management. In ‘Management and Sustainable Development of Coastal Zone Environments’. (Eds A. L. Ramanathan, P. Bhattacharya, T. Dittmar, M. B. K. Prasad and B. Nepune.) pp. 3–18. (Springer, Delhi, India.)

Najjar, R. G., Pyke, C. R., Adams, M. B., Breitburg, D., Hershner, C., Kemp, M., Howarth, R., Mulholland, M. R., Paolisso, M., Secor, D., Sellner, K., Wardrop, D., and Wood, R. (2010). Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86, 1–20.
Potential climate-change impacts on the Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar |

Najjar, R. G., Walker, H. A., Anderson, P. J., Barron, E. J., Bord, R. J., Gibson, J. R., Kennedy, V. S., Knight, C. G., Megonigal, J. P., O’Connor, R. E., Polsky, C. D., Psuty, N. P., Richards, B. A., Sorenson, L. G., Steele, E. M., and Swanson, R. S. (2000). The potential impacts of climate change on the mid-Atlantic coastal region. Climate Research 14, 219–233.

Nilsson, C., and Renöfält, B. M. (2008). Linking flow regime and water quality in rivers: a challenge to adaptive catchment management. Ecology and Society 13, 18.

Paerl, H. W. (2009). Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions. Estuaries and Coasts 32, 593–601.
Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions.Crossref | GoogleScholarGoogle Scholar |

Pinto, R., Patricio, J., Baeta, A., Briab, D. F., Neto, J. M., and Marques, J. C. (2009). Review and evaluation of estuarine biotic indices to assess benthic condition. Ecological Indicators 9, 1–25.
Review and evaluation of estuarine biotic indices to assess benthic condition.Crossref | GoogleScholarGoogle Scholar |

Prasad, M. B. K., Sapaino, M. R. P., Anderson, C. R., Long, W., and Murtugudde, R. (2010). Long-term variability of nutrients and chlorophyll in the Chesapeake Bay: a retrospective analysis, 1985–2008. Estuaries and Coasts 33, 1128–1143.
Long-term variability of nutrients and chlorophyll in the Chesapeake Bay: a retrospective analysis, 1985–2008.Crossref | GoogleScholarGoogle Scholar |

Prasad, M. B. K., Long, W., Zhang, X., Wood, R. J., and Murtugudde, R. (2011). Predicting dissolved oxygen in the Chesapeake Bay: applications and implications. Aquatic Sciences 73, 437–451.
Predicting dissolved oxygen in the Chesapeake Bay: applications and implications.Crossref | GoogleScholarGoogle Scholar |

Price, C. V., Nakagaki, N., Hitt, K. J., and Clawges, R. C. (2006). Enhanced historical land-use and land-cover data sets of the US Geological Survey, US Geological Survey Digital Data Series 240.

Rabalais, N. N., Diaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619.
Dynamics and distribution of natural and human-caused hypoxia.Crossref | GoogleScholarGoogle Scholar |

Roman, M. R., Boicourt, W. C., Kimmel, D. G., Miller, W. D., Adolf, J. E., Bichy, J., Harding, L. W., Houde, E. D., Jung, S., and Zhang, X. (2005). Chesapeake Bay plankton and fish abundance enhanced by Hurricane Isabel. EOS Transactions 86, 261–268.
Chesapeake Bay plankton and fish abundance enhanced by Hurricane Isabel.Crossref | GoogleScholarGoogle Scholar |

RRVNWR (Rappahannock River Valley National Wildlife Refuge) (2009). ‘Comprehensive Conservation Plan 2009.’ (US Fish and Wildlife Service.) Available at http://library.fws.gov/ccps/rappahannockrivervalley_final09.pdf [accessed 3 December 2012]

Ruhl, H. A., and Rybicki, N. B. (2010). Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat. Proceedings of the National Academy of Sciences, USA 107, 16566–16570.
Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat.Crossref | GoogleScholarGoogle Scholar |

Saenger, C., Cronin, T. M., Willard, D., Halka, J., and Kerhin, R. (2008). Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration. Estuaries and Coasts 31, 492–500.
Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration.Crossref | GoogleScholarGoogle Scholar |

Savage, C., Leavitt, P. R., and Elmgren, R. (2010). Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea. Limnology and Oceanography 55, 1033–1046.
Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |

Seitzinger, S., and Lee, R. (2008). Land-based sources of nutrients to large marine ecosystems. In ‘The UNEP Large Marine Ecosystem Report: a Perspective on Changing Conditions in LMEs of the World’s Regional Seas’. (Eds K. Sherman and G. Hempel.) pp. 81–98. UNEP Regional Seas Report and Studies No. 182. (United Nations Environment Programme: Nairobi, Kenya.)

Seitzinger, S. P., Sanders, R. W., and Styles, R. (2002). Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography 47, 353–366.
Bioavailability of DON from natural and anthropogenic sources to estuarine plankton.Crossref | GoogleScholarGoogle Scholar |

Smith, V. H., and Schindler, D. W. (2009). Eutrophication science: where do we go from here? Trends in Ecology & Evolution 24, 201–207.
Eutrophication science: where do we go from here?Crossref | GoogleScholarGoogle Scholar |

Stedmon, C. A., Markaker, S., Søndergaard, M., Vang, T., Laubel, A., Borch, N. H., and Windelin, A. (2006). Dissolved organic matter (DOM) export to a temperate estuary: seasonal variations and implications of land use. Estuaries and Coasts 29, 388–400.

Steffen, W., Crutzen, P. J., and McNeill, J. R. (2007). The anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621.
The anthropocene: are humans now overwhelming the great forces of nature?Crossref | GoogleScholarGoogle Scholar | 18240674PubMed |

Stutter, M. I., Langan, S. J., and Cooper, R. J. (2008). Spatial and temporal dynamics of stream water particulate nd dissolved N, P and C forms along a catchment transect, NE Scotland. Journal of Hydrology 350, 187–202.
Spatial and temporal dynamics of stream water particulate nd dissolved N, P and C forms along a catchment transect, NE Scotland.Crossref | GoogleScholarGoogle Scholar |

Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380.
Impact of humans on the flux of terrestrial sediment to the global coastal ocean.Crossref | GoogleScholarGoogle Scholar |

Vidon, P., Wagner, L. E., and Soyeux, E. (2008). Changes in the character of DOC in streams during storms in two midwestern watersheds with contrasting land uses. Biogeochemistry 88, 257–270.
Changes in the character of DOC in streams during storms in two midwestern watersheds with contrasting land uses.Crossref | GoogleScholarGoogle Scholar |

Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., and Van Driel, J. N. (2001). Completion of the 1990’s national land cover data set for the conterminous United States. Photogrammetric Engineering and Remote Sensing 67, 650–662.

Wiedeman, A., and Cosgrove, A. (1998). Chesapeake Bay watershed model application and calculation of nutrient and sediment loadings, Appendix F: Report #EPA 903. US Environmental Protection Agency Chesapeake Bay Program Office, Annapolis, MD.

Williams, M., Longstaff, B., Buchanan, C., Llansó, R., and Dennison, W. (2009). Development and evaluation of a spatially-explicit index of Chesapeake Bay health. Marine Pollution Bulletin 59, 14–25.
Development and evaluation of a spatially-explicit index of Chesapeake Bay health.Crossref | GoogleScholarGoogle Scholar | 19117579PubMed |

Wood, R. J., Boesch, D. F., and Kennedy, V. S. (2002). Future consequences of climate change for the Chesapeake Bay ecosystem and its fisheries. American Fisheries Society Symposium 32, 171–184.

Zaman, M., and Chang, S. X. (2004). Substrate type, temperature and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems. Biology and Fertility of Soils 39, 269–279.
Substrate type, temperature and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems.Crossref | GoogleScholarGoogle Scholar |