Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The mark–recapture method applied to population estimates of a freshwater crab on an alluvial plain

Débora de Azevedo Carvalho A C , Pablo Agustín Collins A and Cristian Javier De Bonis B
+ Author Affiliations
- Author Affiliations

A Insituto Nacional de Limnología – Laboratorio de Macrocrustaceos, Paraje El Pozo, Ciudad Universitaria, Santa Fe, Santa Fe 3000, Argentina.

B Insituto Nacional de Limnologia, Santa Fe, Santa Fe, Argentina.

C Corresponding author. Email: dazevedo@inali.unl.edu.ar

Marine and Freshwater Research 64(4) 317-323 https://doi.org/10.1071/MF12350
Submitted: 1 August 2012  Accepted: 23 January 2013   Published: 10 April 2013

Abstract

Mark–recapture methods are a useful population estimation tool, although with many assumptions that cannot always be satisfied for all types of organisms and environments. In the present study, three mark–recapture methods (Petersen, Schnabel and Schumacher–Eschmeyer) were applied in a preliminary trial to estimate the population size of the crab Trichodactylus borellianus and to gain information that would support the use of the methods in the field. The accuracy of these estimates was verified by analysing the percentage of bias, the width of the confidence intervals, and by a chi-square test. The assumptions of equal catchability and closed population were verified, along with assumptions related to the efficiency of marking. The adjusted methodology was applied in a short-term study of a pond on the Paraná floodplain. The results showed that the assumptions were satisfied for both the experimental and field studies. The Schnabel was the most accurate method evaluated in both studies. Although the Schumacher–Eschmeyer method also provided accurate results in the field study, it needed large samples to give reliable estimates. The applicability of these methods depends on the stage of the hydrological cycle. The choice of a short-term research design will ensure that the assumption of a closed population is valid for research of this type on an alluvial plain.

Additional keywords: Paraná River, Petersen, Schnabel, Schumacher–Eschmeyer, Trichodactylidae.


References

Bailey, N. T. J. (1952). Improvements in the interpretation of recapture data. Journal of Animal Ecology 21, 120–127.
Improvements in the interpretation of recapture data.Crossref | GoogleScholarGoogle Scholar |

Bell, M. C., Eaton, D. R., Bannister, R. C. A., and Addison, J. T. (2003). A mark–recapture approach to estimating population density from continuous trapping data: application to edible crabs, Cancer pangurus, on the east coast of England. Fisheries Research 65, 361–378.
A mark–recapture approach to estimating population density from continuous trapping data: application to edible crabs, Cancer pangurus, on the east coast of England.Crossref | GoogleScholarGoogle Scholar |

Beyers, C. J. de B. (1994). Population size and density of the deep-sea red crab Chaceon maritae (Manning and Holthuis) of Namibia determined from tag-recapture. South African Journal of Marine Science 14, 1–9.
Population size and density of the deep-sea red crab Chaceon maritae (Manning and Holthuis) of Namibia determined from tag-recapture.Crossref | GoogleScholarGoogle Scholar |

Bueno, S. L. de S., Shimizu, R. M., and Rocha, S. S. (2007). Estimating the population size of Aegla franca (Decapoda: Anomura: Aeglidae) by mark–recapture technique from and isolated section of Barro Preto stream, county of Claraval, state of Minas Gerais, southeastern Brazil. Journal of Crustacean Biology 27, 553–559.
Estimating the population size of Aegla franca (Decapoda: Anomura: Aeglidae) by mark–recapture technique from and isolated section of Barro Preto stream, county of Claraval, state of Minas Gerais, southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Overton, W. S. (1979). Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936.
Robust estimation of population size when capture probabilities vary among animals.Crossref | GoogleScholarGoogle Scholar |

Chao, A. (1987). Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43, 783–791.
Estimating the population size for capture–recapture data with unequal catchability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7gsl2qsw%3D%3D&md5=da96006d03e410d5482c133fb69dc96aCAS | 3427163PubMed |

Collins, P. A., Williner, V., and Giri, F. (2007). Littoral communities. Macrocrustaceans. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi and M. J. Parma.) pp. 277–301. (Springer-Verlag: Heidelberg, Germany.)

Corgos, A., Sampedro, M. P., González-Gurriarán, E., and Freire, J. (2007). Growth at moult, intermoult period, and moulting seasonality of the spider crab Maja Brachydactyla: combining information from marking–recapture and experimental studies. Journal of Crustacean Biology 27, 255–262.
Growth at moult, intermoult period, and moulting seasonality of the spider crab Maja Brachydactyla: combining information from marking–recapture and experimental studies.Crossref | GoogleScholarGoogle Scholar |

Crespin, L., Choquet, R., Lima, M., Merrit, J., and Pradel, R. (2008). Is heterogeneity of catchability in capture–recapture a mere sampling artifact or a biologically relevant feature of the population? Population Ecology 50, 247–256.

de Graaf, M. (2007). Tag retention, survival and growth of marron Cherax tenuimanus (Crustacea: Decapoda) marked with coded micro wire tags. Marine and Freshwater Research 58, 1044–1047.
Tag retention, survival and growth of marron Cherax tenuimanus (Crustacea: Decapoda) marked with coded micro wire tags.Crossref | GoogleScholarGoogle Scholar |

Drolet, D., and Barbeau, M. A. (2006). Immersion in neutral red solution as a mass-marking technique to study the movement of the amphipod Corophium volutator. Journal of Crustacean Biology 26, 540–542.
Immersion in neutral red solution as a mass-marking technique to study the movement of the amphipod Corophium volutator.Crossref | GoogleScholarGoogle Scholar |

Drummond-Davis, N. C., Mann, K. H., and Pottle, R. A. (1982). Some estimates of population density and feeding habits of the rock crab,Cancer irroratus, in a kelp bed in Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences 39, 636–639.
Some estimates of population density and feeding habits of the rock crab,Cancer irroratus, in a kelp bed in Nova Scotia.Crossref | GoogleScholarGoogle Scholar |

Graunt, J. (1662). ‘Natural and political observations made upon the bills of mortality.’ Available at http://www.edstephan.org/Graunt/bills.html [accessed 1 August 2012].

Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and immigration – stochastic model. Biometrika 52, 225–247.
| 1:STN:280:DyaF2M7ks1WktQ%3D%3D&md5=f4aa8c4747f746b5cfc4a25095070adbCAS | 14341276PubMed |

Krebs, C. J. (1999). ‘Ecological Methodology.’ 2nd edn. (Addison-Wesley Educational Publishers: Vancouver, Canada.)

Manly, B. F. J. (1970). A simulation study of animal population estimation using the capture–recapture method. Journal of Applied Ecology 7, 13–39.
A simulation study of animal population estimation using the capture–recapture method.Crossref | GoogleScholarGoogle Scholar |

Mares, M. A., Streilein, K. E., and Willig, M. R. (1981). Experimental assessment of several population estimation techniques on an introduced populations of eastern chipmunks. Journal of Mammalogy 62, 315–328.
Experimental assessment of several population estimation techniques on an introduced populations of eastern chipmunks.Crossref | GoogleScholarGoogle Scholar |

Minta, S., and Mangel, M. (1989). A simple population estimate based on simulation for capture–recapture and capture–resight data. Ecology 70, 1738–1751.
A simple population estimate based on simulation for capture–recapture and capture–resight data.Crossref | GoogleScholarGoogle Scholar |

Pilotto, F., Free, G., Crosa, G., Sena, F., Ghiani, M., and Cardoso, A. C. (2008). The invasive crayfish Orconectes limosus in Lake Varese: estimating abundance and population size structure in the context of habitat and methodological constraints. Journal of Crustacean Biology 28, 633–640.
The invasive crayfish Orconectes limosus in Lake Varese: estimating abundance and population size structure in the context of habitat and methodological constraints.Crossref | GoogleScholarGoogle Scholar |

Pollock, K., Nichols, J. D., Brownie, C., and Hines, J. E. (1990). Statistical inference for capture–recapture experiments. Wildlife Monographs 107, 3–97.

R Development Core Team (2011). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.) Available at http://www.R-project.org/ [accessed 3 December 2012].

Rabeni, C. F., Collier, K. J., Parkyn, S. M., and Hicks, B. J. (1997). Evaluating techniques for sampling stream crayfish (Paranephrops planifrons). New Zealand Journal of Marine and Freshwater Research 31, 693–700.
Evaluating techniques for sampling stream crayfish (Paranephrops planifrons).Crossref | GoogleScholarGoogle Scholar |

Renzulli, P., and Collins, P. A. (2001). Ritmo nictimeral de actividad locomotora de los cangrejos dulciacuícolas Dilocarcinus pagei pagei Simpson 1861 y Trchodactylus borellianus Nobili, 1896. Fabicib 5, 145–153.

Roff, D. A. (1973). On the accuracy of some mark–recapture estimators. Oecologia 12, 15–34.
On the accuracy of some mark–recapture estimators.Crossref | GoogleScholarGoogle Scholar |

Seber, G. A. F. (1965). A note on the multiple recapture census. Biometrika 52, 249–259.
| 1:STN:280:DyaF2M7ks1Wkug%3D%3D&md5=3e1bd1520595b1e08998dea3aef50ec9CAS |

Thomaz, S. M., Roberto, M. C., and Bini, L. M. (1997). Caracterização limnológica dos ambientes aquáticos e influência dos níveis fluviométricos. In ‘A Planície de Inundação do Alto Rio Paraná: Aspectos Físicos, Biológicos e Socioeconómicos.’ (Eds A. E. A. De M. Vazzoler, A. A. Agostinho and N. S. Hahn.) pp. 73–102. (EDUEM: Maringá, Brazil.)

Vay, L. L., Ut, V., and Walton, M. (2007). Population ecology of the mud crab Scylla paramamosain (Estampador) in an estuarine mangrove system; a mark-recapture study. Marine Biology 151, 1127–1135.
Population ecology of the mud crab Scylla paramamosain (Estampador) in an estuarine mangrove system; a mark-recapture study.Crossref | GoogleScholarGoogle Scholar |

Wileyto, E. P., Ewens, W. J., and Mullen, M. A. (1994). Markov-recapture population estimate: a tool for improving interpretation of trapping experiments. Ecology 75, 1109–1117.
Markov-recapture population estimate: a tool for improving interpretation of trapping experiments.Crossref | GoogleScholarGoogle Scholar |

Williams, M. J. (1986). Evaluation of anchor tags for marking the commercial sand crab, Portunus pelagicus (L.) (Portunidae: Decapoda). Marine and Freshwater Research 37, 707–712.
Evaluation of anchor tags for marking the commercial sand crab, Portunus pelagicus (L.) (Portunidae: Decapoda).Crossref | GoogleScholarGoogle Scholar |

Yamamura, K., Wakamura, S., and Kozaim, S. (1992). A method for population estimation from a single release experiment. Applied Entomology and Zoology 27, 9–17.

Yamamura, K., Kishita, M., Arakaki, N., Kawamura, F., and Sadoyama, Y. (2003). Estimation of dispersal distance by mark–recapture experiments using traps: correction of bias by the artificial removal by traps. Population Ecology 45, 149–155.
Estimation of dispersal distance by mark–recapture experiments using traps: correction of bias by the artificial removal by traps.Crossref | GoogleScholarGoogle Scholar |

Zar, J. H. (1996). ‘Biostatistical Analysis.’ 3rd edn. (Prentice Hall: New York.)