Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Food-web structure in a subtropical coastal lake: how phylogenetic constraints may affect species linkages

Lúcia Ribeiro Rodrigues A C , Nelson Ferreira Fontoura B and David da Motta Marques A
+ Author Affiliations
- Author Affiliations

A Laboratório de Ecotecnologia e Limnologia, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Brazil.

B Laboratório de Ecologia Aquática, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil.

C Corresponding author. Email: luciarrodrigues@gmail.com

Marine and Freshwater Research 65(5) 453-465 https://doi.org/10.1071/MF12259
Submitted: 17 September 2012  Accepted: 22 September 2013   Published: 20 December 2013

Abstract

To describe a food-web structure is a main goal in any attempt to understand ecosystem functioning. In the present study, we analysed the isotopic composition (δ13C and δ15N) of primary producers and consumers in the large subtropical Mangueira Lake in southern Brazil. On the basis of the δ13C and δ15N values and analysis of stomach contents of several fish species, we provide a description of the food-web structure and trophic positions of the dominant fish species. Analysis of nitrogen isotope ratios indicated the existence of two consumer trophic levels. Isotopic signatures of primary consumers were compatible with those of producers, indicating a food web sustained by autochthonous carbon. Nevertheless, when food items were classified in larger groups by relative size and source, the combined analysis of isotopic signature and feeding preferences revealed a phylogenetically structured arrangement for the fish species of Mangueira Lake. This indicates that the main feeding niches are shared by taxonomically related species.

Additional keywords: energy flow, matter flow, shallow lake, trophic linkage.


References

Abelha, M. C. F., Goulart, E., Kashiwaqui, E. A. L., and Silva, M. R. (2006). Astyanax paranae Eigenmann, 1914 (Characiformes: Characidae) in the Alagados Reservoir, Paraná, Brazil: diet composition and variation. Neotropical Ichthyology 4, 349–356.
Astyanax paranae Eigenmann, 1914 (Characiformes: Characidae) in the Alagados Reservoir, Paraná, Brazil: diet composition and variation.Crossref | GoogleScholarGoogle Scholar |

Aichner, B., Herzschuh, U., and Wilkes, H. (2010). Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Organic Geochemistry 41, 706–718.
Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFygtL8%3D&md5=97c28b9bfd0e6483f49d781860e5a4b4CAS |

Appelberg, M. (2000). Swedish standard methods for sampling freshwater fish with multi-mesh gillnets. Fiskeriverket Information 1, 3–32.

Azim, M. E., and Wahab, M. A. (2005). Periphyton-based pond polyculture. In ‘Periphyton: Ecology, Exploitation and Management’. (Eds M. E. Azim, M. C. J. Verdegem, A. A.van Dam and M. C. M. Beveridge.) pp. 207–222. (CABI Publishing, Wallingford, UK.)

Carpenter, S. R., and Kitchell, J. F. (1993). ‘The Trophic Cascade in Lakes.’ (Cambridge University Press: Cambridge, UK.)

Casatti, L., and Castro, R. C. M. (2006). Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4, 203–214.

Caut, S., Angulo, E., and Courchamp, F. (2009). Variation in discrimination factors (15N and 13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46, 443–453.
Variation in discrimination factors (15N and 13C): the effect of diet isotopic values and applications for diet reconstruction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGgu7k%3D&md5=950cb09c4a70497bd920fd78ebe123c8CAS |

Christensen, D. R., and Moore, B. C. (2009). Using stable isotopes and a multiple-source mixing model to evaluate fish dietary niches in a mesotrophic lake. Lake and Reservoir Management 25, 167–175.
Using stable isotopes and a multiple-source mixing model to evaluate fish dietary niches in a mesotrophic lake.Crossref | GoogleScholarGoogle Scholar |

Clarke, L. R., Vidergar, D. T., and Bennett, D. H. (2005). Stable isotopes and gut content show diet overlap among native and introduced piscivores in a large oligotrophic lake. Ecology Freshwater Fish 14, 267–277.
Stable isotopes and gut content show diet overlap among native and introduced piscivores in a large oligotrophic lake.Crossref | GoogleScholarGoogle Scholar |

De Niro, M. J., and Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45, 341–351.
Influence of diet on the distribution of nitrogen isotopes in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVGmtLw%3D&md5=a146714e55f452e2aca4ddda8fdde2e3CAS |

Deegan, L. A., and Garritt, R. H. (1997). Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147, 31–47.
Evidence for spatial variability in estuarine food webs.Crossref | GoogleScholarGoogle Scholar |

Douglas, M. E., and Matthews, W. J. (1992). Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65, 213–224.
Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage.Crossref | GoogleScholarGoogle Scholar |

Esteves, K. E. (1996). Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi–Guaçú River, Paraná River Basin, Brazil. Environmental Biology of Fishes 46, 83–101.
Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi–Guaçú River, Paraná River Basin, Brazil.Crossref | GoogleScholarGoogle Scholar |

Esteves, K. E., and Galetti Jr, M. P. (1995). Food partitioning among some characids of a small Brazilian floodplain lake from the Paraná River basin. Environmental Biology of Fishes 42, 375–389.
Food partitioning among some characids of a small Brazilian floodplain lake from the Paraná River basin.Crossref | GoogleScholarGoogle Scholar |

France, R. L. (1999). Relationship between DOC concentration and epilithon stable isotopes in boreal lakes. Freshwater Biology 41, 101–105.
Relationship between DOC concentration and epilithon stable isotopes in boreal lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVKmtL0%3D&md5=74a2717022e7849ea77760ed66cfd7a4CAS |

Froneman, P. W. (2001). Stable isotope (δ13C) study of the food web of the temperate Kariega estuary (eastern Cape). African Journal of Aquatic Science 26, 49–56.
Stable isotope (δ13C) study of the food web of the temperate Kariega estuary (eastern Cape).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVOit78%3D&md5=0bdb113218e71c4eed02f28c5d8c165bCAS |

Frost, P. C., Stelzer, R. S., Lamberti, G. A., and Elser, J. J. (2002). Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C : N : P ratios in lentic and lotic habitats. Journal of the North American Benthological Society 21, 515–528.
Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C : N : P ratios in lentic and lotic habitats.Crossref | GoogleScholarGoogle Scholar |

Garcia, A. M., Hoeinghaus, D. J., Vieira, J. P., Winemiller, K. O., Motta-Marques, D. M. L., and Bemvenuti, M. A. (2006). Preliminary examination of food web structure of Nicola Lake (Taim Hydrological System, south Brazil) using dual C and N stable isotope analyses. Neotropical Ichthyology 4, 279–284.
Preliminary examination of food web structure of Nicola Lake (Taim Hydrological System, south Brazil) using dual C and N stable isotope analyses.Crossref | GoogleScholarGoogle Scholar |

Garcia, A. M., Hoeinghaus, D. J., Vieira, J. P., and Winemiller, K. O. (2007). Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuarine, Coastal and Shelf Science 73, 399–408.
Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon.Crossref | GoogleScholarGoogle Scholar |

Grosman, M. F., Gonzalez-Castelain, J. R., and Usunoff, E. J. (1996). Trophic niches in an Argentine pond as a way to assess functional relationships between fishes and other communities. Water S.A. 22, 345–350.

Hartz, S. M., Silveira, C. M., and Barbieri, G. (1996). Alimentação das espécies de Astyanax Baird and Girard, 1854 ocorrentes na lagoa Caconde, RS, Brasil (Teleostei, Characidae). Revista Unimar 18, 269–281.

Hyslop, E. J. (1980). Stomach contents analysis - a review of methods and their application. Journal of Fish Biology 17, 411–429.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). World Map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263.

Krebs, C. J. (2001). ‘Ecology: the Experimental Analysis of Distribution and Abundance.’ (Benjamin Cummings, San Francisco, CA.)

Lamberti, G. A., and Moore, J. W. (1984). Aquatic insects as primary consumers. In ‘The Ecology of Aquatic Insects’. (Eds V. H. Resh and D. M. Rosenberg.) pp. 164–195. (Praeger Publishers, New York.)

MacLeod, N. A., and Barton, D. R. (1998). Effect of light intensity, water velocity, and species composition on carbon and nitrogen stable isotope ratios in periphyton. Canadian Journal of Fisheries and Aquatic Sciences 55, 1919–1925.
Effect of light intensity, water velocity, and species composition on carbon and nitrogen stable isotope ratios in periphyton.Crossref | GoogleScholarGoogle Scholar |

Manetta, G. L., Benedito-Cecilio, E., and Martinelli, M. (2003). Carbon sources and trophic position of the main species of fishes of Baía River, Paraná River floodplain, Brazil. Brazilian Journal of Biology 63, 283–290.
Carbon sources and trophic position of the main species of fishes of Baía River, Paraná River floodplain, Brazil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svkvFSjtg%3D%3D&md5=339f9d71ac6bdde8471f1c7b9b3aefbdCAS |

Marinho, C. C., Meirelles-Pereira, F., Gripp, A. R., Guimarães, C. C., Esteves, F. A., and Bozelli, R. L. (2010). Aquatic macrophytes drive sediment stoichiometry and the suspended particulate organic carbon composition of a tropical coastal lagoon. Acta Limnologica Brasiliensia 22, 208–217.

Michener, R. H., and Schell, D. M. (1994). Stable isotope ratios as tracers in marine aquatic food webs, In ‘Stable Isotopes in Ecology and Environmental Science’. (Eds K. Lajtha and R. Michener.) pp. 138–157. (Blackwell Scientific, Malden, MA.)

Minagawa, M., and Wada, E. (1984). Stepwise enrichment of N15 along food chains: further evidence and the relation between delta-n-15 and animal age. Geochimica et Cosmochimica Acta 48, 1135–1140.
Stepwise enrichment of N15 along food chains: further evidence and the relation between delta-n-15 and animal age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlOms7w%3D&md5=1952f633b97cc1bb4dfd173c9243f67fCAS |

Mirande, J. M. (2010). Phylogeny of the family Characidae (Teleostei: Characiformes): from characters to taxonomy. Neotropical Ichthyology 8, 385–568.
Phylogeny of the family Characidae (Teleostei: Characiformes): from characters to taxonomy.Crossref | GoogleScholarGoogle Scholar |

Oliveira, E. F., Goulart, E., Breda, L., Minte-Vera, C. V., Paiva, L. R. S., and Vismara, M. R. (2010). Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyology 8, 569–586.

Oricolli, M. C. G., and Bennemann, S. T. (2006). Dieta de Bryconamericus iheringii (Ostariophysi: Characidae) em riachos da bacia do rio Tibagi, Estado do Paraná. Acta Scientiarum. Biological Sciences 28, 59–63.

Perga, M. E., and Gerdeaux, D. (2005). ‘Are fish what they eat’ all year round? Oecologia 144, 598–606.
‘Are fish what they eat’ all year round?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MvmvVOhsw%3D%3D&md5=0a70e0eeaa2e7836d0970e0523d46914CAS | 15891838PubMed |

Peterson, B. J., and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology Evolution and Systematics 18, 293–320.
Stable isotopes in ecosystem studies.Crossref | GoogleScholarGoogle Scholar |

Petr, T. (2000). Interactions between fish and aquatic macrophytes in inland waters. A review. FAO Fisheries Technical Paper 396, 1–185.

Phillips, D. L., Newsome, S. D., and Gregg, J. W. (2005). Combining sources in stable isotope mixing models: alternative methods. Oecologia 144, 520–527.
Combining sources in stable isotope mixing models: alternative methods.Crossref | GoogleScholarGoogle Scholar | 15711995PubMed |

Pinnegar, J. K., and Polunin, N. V. C. (2000). Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122, 399–409.
Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes.Crossref | GoogleScholarGoogle Scholar |

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703–718.
Using stable isotopes to estimate trophic position: models, methods and assumptions.Crossref | GoogleScholarGoogle Scholar |

Post, D. M. (2003). Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84, 1298–1310.
Individual variation in the timing of ontogenetic niche shifts in largemouth bass.Crossref | GoogleScholarGoogle Scholar |

Power, M., Power, G., Caron, F., Doucett, R. R., and Guiguer, K. R. A. (2002). Growth and dietary niche in Salvelinus alpinus and Salvelinus fontinalis as revealed by stable isotope analysis. Environmental Biology of Fishes 64, 75–85.
Growth and dietary niche in Salvelinus alpinus and Salvelinus fontinalis as revealed by stable isotope analysis.Crossref | GoogleScholarGoogle Scholar |

Ross, S. T. (1986). Resource partitioning in fish assemblages: a review of field studies. Copeia 1986, 352–388.
Resource partitioning in fish assemblages: a review of field studies.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Botero, J. I., Caramaschi, E. P., and Garcez, D. S. (2008). Spatio-temporal variation in fish assemblage in a coastal lagoon without direct contact with the sea (southeastern Brazil). Journal of Coastal Research 24, 181–194.

Soneira, P. A., Ruiz-Díaz, F. J., Bechara, J. A., Almirón, A. E., and Casciotta, J. R. (2006). Hábitos tróficos de las especies del genero Hyphessobrycon (characidae) en los Esteros del Iberá. Universidad Nacional del Nordeste, Comunicaciones Científicas y Tecnológicas, Corrientes, Argentina.

Teixeira, R. L. (1989). Aspectos da ecologia de alguns peixes do arroio Bom Jardim, Triunfo, RS. Revista Brasileira de Biologia 49, 183–192.

Teixeira-de-Mello, T., Meerhoff, M., Pekcan-Hekim, Z., and Jeppesen, E. (2009). Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54, 1202–1215.
Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslWiur0%3D&md5=6383f9eec3b77ab072bc6abd1b270b4bCAS |

Tomazelli, L. J., Dillenburg, S. R., and Villwock, J. A. (2000). Late Quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Revista Brasileira de Geociencias 30, 474–476.

Trudeau, V., and Rasmussen, J. B. (2003). The effect of water velocity on stable carbon and nitrogen isotope signatures of periphyton. Limnology and Oceanography 48, 2194–2199.
The effect of water velocity on stable carbon and nitrogen isotope signatures of periphyton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFagsbs%3D&md5=21a230b1117748d9a706aa20c1781dabCAS |

Vander Zanden, M. J., and Rasmussen, J. B. (2001). Variation in δ15N and δ 13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 2061–2066.
Variation in δ15N and δ 13C trophic fractionation: implications for aquatic food web studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12ltA%3D%3D&md5=6280f32f421299d2521a366e173eb01aCAS |

Vander Zanden, M. J., Shuter, B. J., Lester, N. P., and Rasmussen, J. B. (2000). Within and among population variation in the trophic position of the pelagic top predator, lake trout. Canadian Journal of Fisheries and Aquatic Sciences 57, 725–731.
Within and among population variation in the trophic position of the pelagic top predator, lake trout.Crossref | GoogleScholarGoogle Scholar |

Vanderklift, M. A., and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–182.
Sources of variation in consumer-diet δ15N enrichment: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 12802678PubMed |

Vilella, F. S., Becker, F. G., and Hartz, S. M. (2002). Diet of Astyanax species (Teleostei, Characidae) in an Atlantic Forest river in southern Brazil. Brazilian Archives of Biology and Technology 45, 223–232.
Diet of Astyanax species (Teleostei, Characidae) in an Atlantic Forest river in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Vinson, M. R., and Budy, P. (2011). Sources of variability and comparability between salmonid stomach contents and isotopic analyses: study design lessons and recommendations. Canadian Journal of Fisheries and Aquatic Sciences 68, 137–151.
Sources of variability and comparability between salmonid stomach contents and isotopic analyses: study design lessons and recommendations.Crossref | GoogleScholarGoogle Scholar |

Winemiller, K. O. (1989). Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan llanos. Environmental Biology of Fishes 26, 177–199.
Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan llanos.Crossref | GoogleScholarGoogle Scholar |

Winemiller, K. O. (1991). Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61, 343–365.
Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions.Crossref | GoogleScholarGoogle Scholar |