Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Growth, morphometrics and size structure of the Diadematidae sea urchin Centrostephanus rodgersii in northern New Zealand

Danilo Pecorino A B , Miles D. Lamare A and Mike F. Barker A
+ Author Affiliations
- Author Affiliations

A Department of Marine Science, University of Otago, Dunedin, New Zealand.

B Corresponding author. Email: danilo.pecorino@gmail.com

Marine and Freshwater Research 63(7) 624-634 https://doi.org/10.1071/MF12040
Submitted: 7 February 2012  Accepted: 30 April 2012   Published: 2 July 2012

Abstract

The sea urchin Centrostephanus rodgersii has increased its range in Eastern Australia resulting in important ecological changes. C. rodgersii may also have expanded its distribution range to northern New Zealand in the last five to six decades, although little is known about this process and of the biology of the species in New Zealand. We investigated morphometrics as well as growth using two techniques (growth line count in genital plates and tag–recapture using the fluorescent marker tetracycline). These methods allowed modelling of size at age of C. rodgersii in New Zealand, which we compared with populations recently established in Tasmania. The modelled growth rate was only slightly higher in the New Zealand population, and no differences in morphometrics were observed. The New Zealand population structure suggests that annual recruitment occurs regularly, with the population including a range of ages (3 to 10+ years).

Additional keywords: climate change, competition, growth lines, range expansion, tag–recapture.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L. (1991). Changes in subtidal habitats following mass mortality of sea urchins in Botany Bay, New South Wales. Australian Journal of Ecology 16, 353–362.
Changes in subtidal habitats following mass mortality of sea urchins in Botany Bay, New South Wales.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L. (1993). Spatial heterogeneity, sea urchin grazing and habitat structure on reefs in temperate Australia. Ecology 74, 292–302.
Spatial heterogeneity, sea urchin grazing and habitat structure on reefs in temperate Australia.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L. (1994). Survival of kelp adjacent to areas grazed by sea urchins in New South Wales, Australia. Australian Journal of Ecology 191, 204.

Andrew, N. L., and Byrne, M. (2007). The ecology of Centrostephanus rodgersii. In ‘Edible Sea Urchins: Biology and Ecology’. (Ed. J. M. Lawrence.) pp. 149–160. (Elsevier Science: Amsterdam.)

Andrew, N. L., and MacDiarmid, A. B. (1991). Interrelations between sea urchins and spiny lobsters in northeastern New Zealand. Marine Ecology Progress Series 70, 211–222.
Interrelations between sea urchins and spiny lobsters in northeastern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L., and Underwood, A. J. (1989). Patterns of abundance of the sea urchin Centrostephanus rodgersii (Agassiz) on the central coast of New South Wales, Australia. Journal of Experimental Marine Biology and Ecology 131, 61–80.
Patterns of abundance of the sea urchin Centrostephanus rodgersii (Agassiz) on the central coast of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L., and Underwood, A. J. (1993). Density-dependent foraging in the sea urchin Centrostephanus rodgersii on shallow subtidal reefs in New South Wales, Australia. Marine Ecology Progress Series 99, 89–98.
Density-dependent foraging in the sea urchin Centrostephanus rodgersii on shallow subtidal reefs in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Banks, S. C., Piggott, M. P., Williamson, J. E., Bovè, U., Holbrock, N. J., and Beheregaray, L. B. (2007). Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88, 3055–3064.
Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin.Crossref | GoogleScholarGoogle Scholar |

Black, R., Johnson, M. S., and Trendall, J. T. (1982). Relative size of Aristotle’s Lantern in Echinometra mathaei occurring at different densities. Marine Biology 71, 101–106.
Relative size of Aristotle’s Lantern in Echinometra mathaei occurring at different densities.Crossref | GoogleScholarGoogle Scholar |

Black, R., Codd, C., Hebbert, D., Vink, S., and Burt, J. (1984). The functional significance of the relative size of Aristotle’s Lantern in the sea urchin Echinometra mathaei (de Blainville). Journal of Experimental Marine Biology and Ecology 77, 81–97.
The functional significance of the relative size of Aristotle’s Lantern in the sea urchin Echinometra mathaei (de Blainville).Crossref | GoogleScholarGoogle Scholar |

Brey, T., Pearse, J., Basch, L., McClintock, J., and Slattery, M. (1995). Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound, Antarctica. Marine Biology 124, 279–292.

Brody, S. (1945). 'Bioenergetics and growth.’ (Reinhold Publishing Corporation: New York.)

Bureau, D. (1996). Relationship between feeding, reproductive condition, jaw size and density in the red sea urchin, Strongylocentrotus franciscanus. MS thesis, University of Burnaby, BC.

Burnham, K. P., and Anderson, D. R. (1998). ‘Model selection and inference: a practical information-theoretical approach.’ (Springer-Verlag: New York.)

Choat, J. H., and Schiel, D. R. (1982). Patterns of ditribution and abundance of large brown algae and invertebrate herbivores in subtidal regions of Northern New Zealand. Journal of Experimental Marine Biology and Ecology 60, 129–162.
Patterns of ditribution and abundance of large brown algae and invertebrate herbivores in subtidal regions of Northern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., and Irving, A. D. (2008). Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. Journal of Biogeography 35, 1608–1621.
Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia.Crossref | GoogleScholarGoogle Scholar |

Dix, T. G. (1970). Biology of Evechinus chloroticus (Echinoidea: Echinometridae) from different localities. New Zealand Journal of Marine and Freshwater Research 4, 267–277.
Biology of Evechinus chloroticus (Echinoidea: Echinometridae) from different localities.Crossref | GoogleScholarGoogle Scholar |

Duggan, R. E., and Miller, R. J. (2001). External and internal tags for the green sea urchin. Journal of Experimental Marine Biology and Ecology 258, 115–122.
External and internal tags for the green sea urchin.Crossref | GoogleScholarGoogle Scholar |

Duineveld, G. C. A., and Jenness, M. I. (1984). Differences in growth rated of the sea urchin Echinocardium cordatum as estimated by the parameter ω of the von Bertalanffy equation applied to skeletal rings. Marine Ecology 19, 65–72.

Ebert, T. A. (1968). Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology 49, 1075–1091.

Ebert, T. A. (1980). Relative growth of sea urchin jaws: an example of plastic resource allocation. Bulletin of Marine Science 30, 467–474.

Ebert, T. A. (1988). Calibration of natural growth lines in ossicles of two sea urchins, Strongylocentrotus purpuratus and Echinometra mathaei, using tetracycline. In ‘Echinoderm Biology: Proceeding, 6th International Echinoderm Conference’. (Eds R. D., Burke, P. V. Mladenov, P. Lambert, and R. L. Parsley.) pp. 435–443. (A. A. Balkema: Rotterdam.)

Ebert, T. A., and Russell, M. P. (1992). Growth and mortality estimates for the sea urchin Strongylocentrotus franciscanus from San Nicolas Island, California. Marine Ecology Progress Series 81, 31–41.

Ebert, T. A., and Russell, M. P. (1993). Growth and mortality of subtidal red sea urchins (Strongylocentrotus franciscanus) at San Nicolas Island, California, USA: problems with models. Marine Biology 117, 79–89.
Growth and mortality of subtidal red sea urchins (Strongylocentrotus franciscanus) at San Nicolas Island, California, USA: problems with models.Crossref | GoogleScholarGoogle Scholar |

Ebert, T. A., Dixon, J. D., Schroeter, S. C., Kalvass, P. E., Richmond, N. T, Bradbury, W. A., and Woodby, D. A. (1999). Growth and mortality of red sea urchins Strongylocentrotus franciscanus across a latitudinal gradient. Marine Ecology Progress Series 190, 189–209.
Growth and mortality of red sea urchins Strongylocentrotus franciscanus across a latitudinal gradient.Crossref | GoogleScholarGoogle Scholar |

Ellers, O., and Johnson, A. S. (2009). Polyfluorochrome marking slows growth only during the marking month in the sea urchin Strongylocentrotus droebachiensis. Invertebrate Biology 128, 126–144.
Polyfluorochrome marking slows growth only during the marking month in the sea urchin Strongylocentrotus droebachiensis.Crossref | GoogleScholarGoogle Scholar |

Gage, J. D. (1992). Natural growth bands and growth variability in the sea urchin Echinus esculentus: results from tetracycline tagging. Marine Biology 114, 607–616.
Natural growth bands and growth variability in the sea urchin Echinus esculentus: results from tetracycline tagging.Crossref | GoogleScholarGoogle Scholar |

Gage, J. D., and Tyler, P. A. (1985). Growth and recruitment of the deep sea urchin Echinus affinis. Marine Biology 90, 41–53.
Growth and recruitment of the deep sea urchin Echinus affinis.Crossref | GoogleScholarGoogle Scholar |

Gebauer, P., and Moreno, C. A. (1995). Experimental validation of the growth rings of Loxechinus albus (Molina, 1782) in southern Chile (Echinodermata: Echinoidea). Fisheries Research 21, 423–435.

Hagen, N. T. (2008). Enlarged lantern size in similar-sized, sympatric, sibling species of strongylocentrotid sea urchins: from phenotypic accommodation to functional adaptation for durophagy. Marine Biology 153, 907–924.

Hill, N. A., Blount, C., Poore, A. G. B., Worthington, D., and Steinberg, P. D. (2003). Grazing effects of the sea urchin Centrostephanus rodgersii in two contrasting rocky reefs habitats: effect of urchin density and its implications for the fishery. Marine and Freshwater Research 54, 691–700.
Grazing effects of the sea urchin Centrostephanus rodgersii in two contrasting rocky reefs habitats: effect of urchin density and its implications for the fishery.Crossref | GoogleScholarGoogle Scholar |

Huggett, M. J., King, C. K., Williamson, J. E., and Steinberg, P. D. (2005). Larval development and metamorphosis of the Australian diadematid sea urchin Centrostephanus rodgersii. Invertebrate Reproduction and Development 47, 197–204.

Johnson, C. R., Ling, S. D., Ross, J., Shepherd, S., and Miller, K. (2005). Establishment of the long- spined sea urchin (Centrostephanus rodgersii) in Tasmania: first assessment of potential threats to fisheries. School of Zoology Aquaculture and Fisheries Institute, series FRDC project 2001/2004, Hobart.

Jolicoeur, P. (1985). A flexible 3-parameter curve for limited or unlimited somatic growth. Growth 49, 271–281.
| 1:STN:280:DyaL28%2FjtFCltA%3D%3D&md5=c8edb6083a656b9bce72b9f696b0421bCAS |

Kirby, S., Lamare, M. D., and Barker, M. F. (2006). Growth and morphometrics in the New Zealand sea urchins Pseudechinus huttoni (Echinoidea: Temnopleuridae). New Zealand Journal of Marine and Freshwater Research 40, 413–428.
Growth and morphometrics in the New Zealand sea urchins Pseudechinus huttoni (Echinoidea: Temnopleuridae).Crossref | GoogleScholarGoogle Scholar |

Lamare, M. D., and Mladenov, P. V. (2000). Modelling somatic growth in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae). Journal of Experimental Marine Biology and Ecology 243, 17–43.
Modelling somatic growth in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae).Crossref | GoogleScholarGoogle Scholar |

Lau, D. C. C., Lau, S. C. K., Qian, P. Y., and Qiu, J. W. (2009). Morphological plasticity and resource allocation in response to food limitation and hyposalinity in a sea urchin. Journal of Shellfish Research 28, 383–388.

Lau, D. C. C., Dumont, C. P., Lui, G. C. S., and Qiu, J. W. (2011). Effectiveness of a small marine reserve in southern China in protecting the harvested sea urchin Anthocidaris crassispina: a mark-and-recapture study. Biological Conservation 144, 2674–2683.

Levitan, D. R. (1991). Skeletal changes in the test and jaws of the sea urchin Diadema antillarum in response to food limitation. Marine Biology 111, 431–435.
Skeletal changes in the test and jaws of the sea urchin Diadema antillarum in response to food limitation.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., and Johnson, C. R. (2009). Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens. Marine Ecology Progress Series 374, 113–125.
Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Johnson, C. R., Frusher, S., and King, C. K. (2008). Reproductive potential of a marine ecosystem engineer at the edge of a newly expanded range. Global Change Biology 14, 907–915.
Reproductive potential of a marine ecosystem engineer at the edge of a newly expanded range.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Johnson, C. R., Frusher, S. D., and Ridgway, K. R. (2009). Overfishing reduces resilience of kelp beds to climate driven catastrophic phase shift. Proceedings of the National Academy of Sciences of the United States of America 106, 22 341–22 345.
Overfishing reduces resilience of kelp beds to climate driven catastrophic phase shift.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlamuw%3D%3D&md5=fd44ccc44af038df9539c14e4f334494CAS |

Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J., and Haddon, M. (2009). Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics.Crossref | GoogleScholarGoogle Scholar |

McShane, P. E., and Anderson, O. F. (1997). Resource allocation and growth rates in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae). Marine Biology 128, 657–663.
Resource allocation and growth rates in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae).Crossref | GoogleScholarGoogle Scholar |

Nelson, B. V., and Vance, R. R. (1979). Diel foraging patterns of the sea urchins, Centrostephanus coronatus, as a predator avoidance strategy. Marine Biology 51, 251–258.
Diel foraging patterns of the sea urchins, Centrostephanus coronatus, as a predator avoidance strategy.Crossref | GoogleScholarGoogle Scholar |

Nichols, D., Sime, A. A. T., and Bishop, G. M. (1985). Growth in populations of the sea urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and Firth of Clyde. Journal of Experimental Marine Biology and Ecology 86, 219–228.
Growth in populations of the sea urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and Firth of Clyde.Crossref | GoogleScholarGoogle Scholar |

Olson, M., and Newton, G. (1979). A simple, rapid method for marking individual sea urchins. California Fish and Game 65, 58–62.

Pecorino, D., Lamare, M. D., and Barker, M. F. (in press). Reproduction of the Diadematidae sea urchin Centrostephanus rodgersii in a recently colonized area of northern New Zealand. Marine Biology Research.

Pearce, C. M., Williams, S. W., Yuan, F., Castell, J. D., and Robinson, S. M. C. (2005). Effect of temperature on somatic growth and survivorship of early post-settled green sea urchins, Strongylocentrotus droebachiensis (Müller). Aquaculture Research 36, 600–609.

Pearse, J. S., and Pearse, V. B. (1975). Growth zones in the echinoid skeleton. American Zoologist 15, 731–753.

Pederson, H. G., and Johnson, C. R. (2008). Growth and age structure of sea urchins (Heliocidaris erythrogramma) in complex barrens and native macroalgal beds in eastern Tasmania. ICES Journal of Marine Science 65, 1–11.
Growth and age structure of sea urchins (Heliocidaris erythrogramma) in complex barrens and native macroalgal beds in eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Privitera, D., Chiantore, M., Mangialajo, L., Glavic, N., Kozul, W., and Cattaneovietti, R. (2008). Inter- and intra-specific competition between Paracentrotus lividus and Arbacia lixula in resource-limited barren areas. Journal of Sea Research 60, 184–192.
Inter- and intra-specific competition between Paracentrotus lividus and Arbacia lixula in resource-limited barren areas.Crossref | GoogleScholarGoogle Scholar |

Raymond, B. G., and Scheibling, R. E. (1987). Recrutiment and growth of the sea urchin Strongylocentrotus droebachiensis (Muller) following mass mortality off Nova Scotia, Canada. Journal of Experimental Marine Biology and Ecology 108, 31–54.
Recrutiment and growth of the sea urchin Strongylocentrotus droebachiensis (Muller) following mass mortality off Nova Scotia, Canada.Crossref | GoogleScholarGoogle Scholar |

Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany 10, 290–301.
A flexible growth function for empirical use.Crossref | GoogleScholarGoogle Scholar |

Ridgway, K. R. (2007). Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters 34, L13613.
Long-term trend and decadal variability of the southward penetration of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Robinson, S. M. C., and MacIntyre, A. D. (1997). Aging and growth of the green sea urchin. Bulletin of the Aquaculture Association of Canada 97, 56–60.

Rogers-Bennett, L., Rogers, D. W., Bennett, W. A., and Ebert, T. A. (2003). Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fishery Bulletin 101, 614–626.

Rowley, R. J. (1990). Newly settled sea urchins in a kelp bed and urchin barren bround: a comparison of growth and mortality. Marine Ecology Progress Series 62, 229–240.
| 1:CAS:528:DyaK3MXhtVarsg%3D%3D&md5=017143484709eb3581438d2615969fc5CAS |

Russell, M. P., and Meredith, R. W. (2000). Natural growth lines in echinoid ossicles are not reliable indicators of age: a test using Strongylocentrotus droebachiensis. Invertebrate Biology 119, 410–420.
Natural growth lines in echinoid ossicles are not reliable indicators of age: a test using Strongylocentrotus droebachiensis.Crossref | GoogleScholarGoogle Scholar |

Schuhbauer, A., Brickle, P., and Arkhipkin, A. (2010). Growth and reproduction of Loxechinus albus (Echinodermata: Echinoidea) at the southerly peripheries of their species range, Falkland Islands (South Atlantic). Marine Biology 157, 1837–1847.
Growth and reproduction of Loxechinus albus (Echinodermata: Echinoidea) at the southerly peripheries of their species range, Falkland Islands (South Atlantic).Crossref | GoogleScholarGoogle Scholar |

Spirlet, C., Grosjean, P., and Jangoux, M. (2000). Optimization of gonad growth by manipulation of temperature and photoperiod in a cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture 185, 85–99.

Swan, E. F. (1958). Growth and variation in the sea urchins of York, Maine. Journal of Marine Research (Sears Foundation) 17, 505–522.

Tanaka, M. (1982). A new growth curve which expresses infinite increase. Publications of the Amakusa Marine Biology Laboratory 6, 167–177.

Villouta, E., Chadderton, W. L., Pugsley, C. W., and Hay, C. H. (2001). Effects of sea urchin (Evechinus chloroticus) grazing in Dusky Sound, Fiordland, New Zealand. New Zealand Journal of Marine and Freshwater Research 35, 1007–1024.
Effects of sea urchin (Evechinus chloroticus) grazing in Dusky Sound, Fiordland, New Zealand.Crossref | GoogleScholarGoogle Scholar |

von Bertalanffy, L. (1938). A quantitative theory of organic growth. Human Biology 10, 181–213.
| 1:CAS:528:DyaA1MXksVGhtg%3D%3D&md5=af48dc975e33658a038b008e6e7612eaCAS |

Walford, L. A. (1946). A new graphic method of describing the growth of animals. Biological Bulletin 90, 141–147.
| 1:STN:280:DyaH28%2FktFGhsA%3D%3D&md5=2473d974e8a5b833d27813c6cc4fad8aCAS |

Watts, S. A., Hofer, S. C., Desmond, R. A., Lawrence, A. L., and Lawrence, J. M. (2011). The effect of temperature on feeding and growth characteristics of the sea urchin Lytechinus variegatus fed a formulated feed. Journal of Experimental Marine Biology and Ecology 397, 188–195.