Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes

Kaelin M. Cawley A , Yan Ding A B , James Fourqurean A C and Rudolf Jaffé A B D
+ Author Affiliations
- Author Affiliations

A Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA.

B Department of Chemistry and Biochemistry, Marine Science Program, Florida International University, Miami, FL 33199, USA.

C Department of Biological Sciences, Marine Science Program, Florida International University, Miami, FL 33199, USA.

D Corresponding author. Email: jaffer@fiu.edu

Marine and Freshwater Research 63(11) 1098-1107 https://doi.org/10.1071/MF12028
Submitted: 31 January 2012  Accepted: 13 June 2012   Published: 26 November 2012

Abstract

Low latitude, seagrass-dominated coastal bays, such as Shark Bay, Australia, are potential sources of chromophoric dissolved organic matter (CDOM) to coastal regions. Dissolved organic matter (DOM) is known to influence aquatic nutrient dynamics, microbial community structure, and depth of light penetration in estuarine systems. Shark Bay is a sub-tropical ecosystem with limited freshwater inputs and restricted tidal flushing. As such, much of the DOM is expected to be seagrass-derived. However, combining excitation/emission fluorescence spectroscopy and parallel factor analysis (EEM-PARFAC) with 13C stable isotope analysis of DOM, we found evidence for DOM inputs from terrestrial (riverine and possibly groundwater), autochthonous plankton, macroalgae, and seagrass sources. Isotopic analysis of 13C in DOM supports the idea that seagrass inputs contribute substantially to the DOM pool in Shark Bay, whereas, EEM-PARAFAC data suggests that much of this input is derived from decomposing seagrass detritus and to a lesser extent due to exudation during primary production. We also report increases in DOM concentrations and changes in DOM characteristics with increasing salinity in surface water samples, indicating that evaporation is an important control on DOM concentration and photo-degradation may play a critical role in transforming DOM within the system.

Additional keywords : EEM-PARAFAC, fluorescence, seagrass, stable isotopes.


References

Anderson, W. T., and Fourqurean, J. W. (2003). Intra- and interannual variability in seagrass carbon and nitrogen stble isotopes from south Florida, a preliminary study. Organic Geochemistry 34, 185–194.
Intra- and interannual variability in seagrass carbon and nitrogen stble isotopes from south Florida, a preliminary study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1CgsQ%3D%3D&md5=2ce95d866197896fe2463858485793afCAS |

Apostolaki, E. T., Holmer, M., Marba, N., and Karakassis, I. (2010). Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter in the Mediterranean. Hydrobiologia 649, 13–23.
Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter in the Mediterranean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVyksr0%3D&md5=2a22bb07d7864806fddf25a6ac1cc83bCAS |

Barrón, C., and Duarte, C. M. (2009). Dissolved organic matter release in a Posidonia oceanica meadow. Marine Ecology Progress Series 374, 75–84.
Dissolved organic matter release in a Posidonia oceanica meadow.Crossref | GoogleScholarGoogle Scholar |

Belicka, L. L., Burkholder, D., Fourqurean, J. W., Heithaus, M. R., Macko, S. A., and Jaffé, R. (2012). Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem. Marine and Freshwater Research 63, 1085–1097.
Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem.Crossref | GoogleScholarGoogle Scholar |

Burkholder, D. A., Heithaus, M. R., Thomson, J. A., and Fourqurean, J. W. (2011). Diversity in trophic interactions of green sea turtles Chelonia mydas on a relatively pristine coastal foraging ground. Marine Ecology Progress Series 439, 277–293.
Diversity in trophic interactions of green sea turtles Chelonia mydas on a relatively pristine coastal foraging ground.Crossref | GoogleScholarGoogle Scholar |

Burkholder, D. A., Fourqurean, J. W., and Heithaus, M. R. (In press). Spatial pattern in seagrass stoichiometry indicates both N-limited and P-limited regions of an iconic P-limited subtropical bay. Marine Ecology Progress Series , .

Carlson, P. R., Yarbro, L. A., Kaufman, K. A., and Mattson, R. A. (2010). Vulnerability and resilience of seagrasses to hurricane and runoff impacts along Florida's west coast. Hydrobiologia 649, 39–53.
Vulnerability and resilience of seagrasses to hurricane and runoff impacts along Florida's west coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVylu7c%3D&md5=031b9317e0db51927dd1545c7040a770CAS |

Chen, M. L., Price, R. M., Yamashita, Y., and Jaffé, R. (2010). Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Applied Geochemistry 25, 872–880.
Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics.Crossref | GoogleScholarGoogle Scholar |

Childers, D. L. (2006). A synthesis of long-term research by the Florida Coastal Everglades LTER Program. Hydrobiologia 569, 531–544.
A synthesis of long-term research by the Florida Coastal Everglades LTER Program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyju70%3D&md5=a8e589659d54ebef2ccfb613cc4dc050CAS |

Chin, Y. P., Aiken, G., and O’Loughlin, E. (1994). Molecular-weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science & Technology 28, 1853–1858.
Molecular-weight, polydispersity, and spectroscopic properties of aquatic humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1ems7g%3D&md5=6a7ab81b87ff5dcab6cb91df7b748043CAS |

Coplen, T. B., Brand, W. A., Gehre, M., Groning, M., Meijer, H. A., Toman, B., and Verkouteren, R. M. (2006). New guidelines for d13C measurements. Analytical Chemistry 78, 2439–2441.
New guidelines for d13C measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVSqs7c%3D&md5=76e3b6c56caadef4778408b37699e776CAS |

Cory, R. M., and McKnight, D. M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology 39, 8142–8149.
Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrvO&md5=76ecebf810a382901a72b1ea5b9bed74CAS |

Costa, A. S., Passos, E. D., Garcia, C. A. B., and Alves, J. D. H. (2011). Characterization of dissolved organic matter in the Piaui River Estuary, Northeast Brazil. Journal of the Brazilian Chemical Society 22, 2139–2147.
Characterization of dissolved organic matter in the Piaui River Estuary, Northeast Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygsrvF&md5=45b885fdeca0b8b650b27cf98101f7caCAS |

Devlin, M., and Schaffelke, B. (2009). Spatial extent of riverine flood plumes and exposure of marine ecosystems in the Tully coastal region, Great Barrier Reef. Marine and Freshwater Research 60, 1109–1122.
Spatial extent of riverine flood plumes and exposure of marine ecosystems in the Tully coastal region, Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqtLzO&md5=9feb7d3ca6f828afda7123392c215df2CAS |

Dittmar, T. (2008). The molecular level determination of black carbon in marine dissolved organic matter. Organic Geochemistry 39, 396–407.
The molecular level determination of black carbon in marine dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVeqt7o%3D&md5=94a9ee4d1628219d80d39e01b1b0534aCAS |

Duarte, C. M. (1999). Seagrass ecology at the turn of the millennium: challenges for the new century. Aquatic Botany 65, 7–20.
Seagrass ecology at the turn of the millennium: challenges for the new century.Crossref | GoogleScholarGoogle Scholar |

Fellman, J. B., Petrone, K. C., and Grierson, P. F. (2011). Source, biogeochemical cycling, and fluorescence characteristics of dissolved organic matter in an agro-urban estuary. Limnology and Oceanography 56, 243–256.
Source, biogeochemical cycling, and fluorescence characteristics of dissolved organic matter in an agro-urban estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVGit7o%3D&md5=35192326fd11161758bae893ba6b9a4cCAS |

Fourqurean, J. W., Jones, R. D., and Zieman, J. C. (1993). Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuarine, Coastal and Shelf Science 36, 295–314.
Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVKjsb0%3D&md5=b37dbcb38d3f6ba9726736af93ab236eCAS |

Harvey, H. R., and Mannino, A. (2001). The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers. Organic Geochemistry 32, 527–542.
The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslyiu70%3D&md5=42f93380cdd3d6df96cd4a4d1b7475bdCAS |

Hearty, P. J., and O’Leary, M. J. (2008). Carbonate eolianites, quartz sands, and Quaternary sea-level cycles, Western Australia: A chronostratigraphic approach. Quaternary Geochronology 3, 26–55.
Carbonate eolianites, quartz sands, and Quaternary sea-level cycles, Western Australia: A chronostratigraphic approach.Crossref | GoogleScholarGoogle Scholar |

Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K. (2008). Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53, 955–969.
Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter.Crossref | GoogleScholarGoogle Scholar |

Jaffé, R., McKnight, D., Maie, N., Cory, R., Mcdowell, W. H., and Campbell, J. L. (2008). Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. Journal of Geophysical Research – Biogeosciences 113, 15.

Kahn, A. E., and Durako, M. J. (2009). Wavelength-specific photosynthetic responses of Halophila johnsonii from marine-influenced versus river-influenced habitats. Aquatic Botany 91, 245–249.
Wavelength-specific photosynthetic responses of Halophila johnsonii from marine-influenced versus river-influenced habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKntbfI&md5=94346201f9a18447e95ab52128b969deCAS |

Khodse, V. B., and Bhosle, N. B. (2011). Bacterial utilization of size-fractionated dissolved organic matter. Aquatic Microbial Ecology 64, 299–309.
Bacterial utilization of size-fractionated dissolved organic matter.Crossref | GoogleScholarGoogle Scholar |

Kieber, R. J., Hydro, L. H., and Seaton, P. J. (1997). Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances. Limnology and Oceanography 42, 1454–1462.
Photooxidation of triglycerides and fatty acids in seawater: implication toward the formation of marine humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlyjt7o%3D&md5=d6f758ebd8bf5d28169391ec73fd2641CAS |

Kimmerer, W. J., Mckinnon, A. D., Atkinson, M. J., and Kessell, J. A. (1985). Spatial distributions of plankton in Shark Bay, Western Australia. Australian Journal of Marine and Freshwater Research 36, 421–432.

Lee, T. N., Johns, E., Melo, N., Smith, R. H., Ortner, P., and Smith, D. (2006). On Florida Bay hypersalinity and water exchange. Bulletin of Marine Science 79, 301–327.

Maie, N., Yang, C. Y., Miyoshi, T., Parish, K., and Jaffé, R. F. (2005). Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem. Limnology and Oceanography 50, 23–35.
Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gju78%3D&md5=5a353a1fc0e9c22757f860f1344c55e2CAS |

Maie, N., Boyer, J. N., Yang, C. Y., and Jaffé, R. (2006a). Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida Coastal Everglades. Hydrobiologia 569, 135–150.
Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida Coastal Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyjur4%3D&md5=773e792195016528fa3e15f78fc43d02CAS |

Maie, N., Parish, K. J., Watanabe, A., Knicker, H., Benner, R., Abe, T., Kaiser, K., and Jaffé, R. (2006b). Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem. Geochimica et Cosmochimica Acta 70, 4491–4506.
Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslSjurw%3D&md5=565ab6295869154e7abb4773e8ca2b9dCAS |

Maie, N., Jaffé, R., Miyoshi, T., and Childers, D. L. (2006c). Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78, 285–314.
Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKntro%3D&md5=f5935a0b25c32b12d26ff2c9ca114b23CAS |

Maie, N., Yamashita, Y., Cory, R. M., Boyer, J., and Jaffé, R. (2012). Application of excitation emission matrix fluorescence monitoring in the assessment of spatial and seasonal drivers of dissolved organic composition: sources and physical disturbance controls. Applied Geochemistry 27, 917–929.
Application of excitation emission matrix fluorescence monitoring in the assessment of spatial and seasonal drivers of dissolved organic composition: sources and physical disturbance controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2mtrY%3D&md5=6c2a3efd219ac933e50dde2213bc3dd4CAS |

McCallister, S. L., Bauer, J. E., and Canuel, E. A. (2006a). Bioreactivity of estuarine dissolved organic matter: a combined geochemical and microbiological approach. Limnology and Oceanography 51, 94–100.
Bioreactivity of estuarine dissolved organic matter: a combined geochemical and microbiological approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFaqt7c%3D&md5=2fcd7842e9fe5cce568ef3b107268155CAS |

McCallister, S. L., Bauer, J. E., Ducklow, H. W., and Canuel, E. A. (2006b). Sources of estuarine dissolved and particulate organic matter: a multi-tracer approach. Organic Geochemistry 37, 454–468.
Sources of estuarine dissolved and particulate organic matter: a multi-tracer approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1ajtbw%3D&md5=e6f3bbf7eb8c2759227226c323851d50CAS |

McKnight, D. M., Andrews, E. D., Spaulding, S. A., and Aiken, G. R. (1994). Aquatic fulvic acids in algal-rich Antarctic ponds. Limnology and Oceanography 39, 1972–1979.
Aquatic fulvic acids in algal-rich Antarctic ponds.Crossref | GoogleScholarGoogle Scholar |

McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46, 38–48.
Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFKjtrk%3D&md5=5036e752cf538cdbc81f09cec244105cCAS |

Miller, M. P., McKnight, D. M., and Chapra, S. C. (2009). Production of microbially-derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton. Aquatic Sciences 71, 170–178.
Production of microbially-derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Ons7o%3D&md5=c9c8166ad6d1abe58ebf9ebfe1c38a79CAS |

Moran, M. A., Sheldon, W. M., and Zepp, R. G. (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography 45, 1254–1264.
Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCitLk%3D&md5=ad5f5167117bcdff1043e48f9d29cf6fCAS |

Murphy, K. R., Stedmon, C. A., Waite, T. D., and Ruiz, G. M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Marine Chemistry 108, 40–58.
Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGlu7vL&md5=e0524e4914485c2f87c81739da6334d6CAS |

Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology 36, 742–746.
Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFai&md5=5cecf7f8ea3b17e01e20422500cb635fCAS |

Osburn, C. L., and St-Jean, G. (2007). The use of wet chemical oxidation with high-amplification isotope ratio mass spectrometry (WCO-IRMS) to measure stable isotope values of dissolved organic carbon in seawater. Limnology and Oceanography, Methods 5, 296–308.
The use of wet chemical oxidation with high-amplification isotope ratio mass spectrometry (WCO-IRMS) to measure stable isotope values of dissolved organic carbon in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2rtrjN&md5=01156fb2a96fcb67bc0c5ef073306c29CAS |

Osburn, C. L., and Stedmon, C. A. (2011). Linking the chemical and optical properties of dissolved organic matter in the Baltic–North Sea transition zone to differentiate three allochthonous inputs. Marine Chemistry 126, 281–294.
Linking the chemical and optical properties of dissolved organic matter in the Baltic–North Sea transition zone to differentiate three allochthonous inputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsb7N&md5=a3f4eb79472549b3f6f67265ef6de640CAS |

Osburn, C. L., Wigdahl, C. R., Fritz, S. C., and Saros, J. E. (2011). Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains. Limnology and Oceanography 56, 2371–2390.
Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yntL3K&md5=4c14d23cc63d0416fd9ee9d90ac79bbbCAS |

Pisani, O., Yamashita, Y., and Jaffé, R. (2011). Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool. Water Research 45, 3836–3844.
Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFOrtr0%3D&md5=ecee6e259cbeca20f24d5894ed61fe78CAS |

Romera-Castillo, C., Saramento, H., Alvarez-Salgado, X. A., Gasol, J. M., and Marrase, C. (2010). Production of chromophoric dissolved organic matter by marine phytoplankton. Limnology and Oceanography 55, 446–454.
Production of chromophoric dissolved organic matter by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSgu7Y%3D&md5=60c9e1e7c5abada39af67e84cff01f36CAS |

Shank, G. C., and Evans, A. (2011). Distribution and photoreactivity of chromophoric dissolved organic matter in northern Gulf of Mexico shelf waters. Continental Shelf Research 31, 1128–1139.
Distribution and photoreactivity of chromophoric dissolved organic matter in northern Gulf of Mexico shelf waters.Crossref | GoogleScholarGoogle Scholar |

Shank, G. C., Zepp, R. G., Vahatalo, A., Lee, R., and Bartels, E. (2010). Photobleaching kinetics of chromophoric dissolved organic matter derived from mangrove leaf litter and floating Sargassum colonies. Marine Chemistry 119, 162–171.
Photobleaching kinetics of chromophoric dissolved organic matter derived from mangrove leaf litter and floating Sargassum colonies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFSntb8%3D&md5=118944cac987e5802be0d1f30be9caccCAS |

Shank, G., Evans, A., Yamashita, Y., and Jaffé, R. (2011). Solar radiation-enhanced dissolution of particulate organic matter form coastal marine sediments. Limnology and Oceanography 56, 577–588.
Solar radiation-enhanced dissolution of particulate organic matter form coastal marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVGkt7g%3D&md5=ba0a7ef805349892a2455ebef19c9f77CAS |

Smith, S. V. (1984). Phosphorus versus nitrogen limitation in the marine environment. Limnology and Oceanography 29, 1149–1160.
Phosphorus versus nitrogen limitation in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtVSgsbc%3D&md5=c503cae7abba17d48781fdc68d3a801fCAS |

Smith, S. V., and Atkinson, M. J. (1984). Phosphorus limitation of net production in a confined aquatic ecosystem. Nature 307, 626–627.
Phosphorus limitation of net production in a confined aquatic ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVykur0%3D&md5=8ff3fd50b697f4fc38f346518807fa6eCAS |

Stabenau, E. R., Zepp, R. G., Bartels, E., and Zika, R. G. (2004). Role of the seagrass Thalassia testudinum as a source of chromophoric dissolved organic matter in coastal south Florida. Marine Ecology Progress Series 282, 59–72.
Role of the seagrass Thalassia testudinum as a source of chromophoric dissolved organic matter in coastal south Florida.Crossref | GoogleScholarGoogle Scholar |

Stedmon, C. A., and Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography, Methods 6, 572–579.
Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWqsL%2FL&md5=b121fcb120bde31069ca4317d5f71049CAS |

Stedmon, C. A., and Markager, S. (2005). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography 50, 686–697.
Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFahsLc%3D&md5=00644340a4e4fc4bc0d7d9a6714eba35CAS |

Van Engeland, T., Bouma, T. J., Morris, E. P., Brun, F. G., Peralta, G., Lara, M., Hendriks, I. E., Soetaert, K., and Middelburg, J. J. (2011). Potential uptake of dissolved organic matter by seagrasses and macroalgae. Marine Ecology Progress Series 427, 71–81.
Potential uptake of dissolved organic matter by seagrasses and macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOgur0%3D&md5=d961b1b7198ebe0eeebc1bcf0af45348CAS |

Walker, D. I., Kendrick, G. A., and McComb, A. J. (1988). The distribution of seagrass species in Shark Bay, Western-Australia, with notes on their ecology. Aquatic Botany 30, 305–317.
The distribution of seagrass species in Shark Bay, Western-Australia, with notes on their ecology.Crossref | GoogleScholarGoogle Scholar |

Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37, 4702–4708.
Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFCgtLY%3D&md5=029a846a8c760e3bc655495ecd58803fCAS |

Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., and Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal – Journal Des Sciences Hydrologiques 54, 101–123.
A review of the potential impacts of climate change on surface water quality.Crossref | GoogleScholarGoogle Scholar |

Yamashita, Y., Jaffé, R., Maie, N., and Tanoue, E. (2008). Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnology and Oceanography 53, 1900–1908.
Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqsrzN&md5=b32bd5f81c4fc910248f3beb8bbbaeeaCAS |

Yamashita, Y., Scinto, L. J., Maie, N., and Jaffé, R. (2010). Dissolved organic matter characteristics across a subtropical wetland's landscape: application of optical properties in the assessment of environmental dynamics. Ecosystems (New York, N.Y.) 13, 1006–1019.
Dissolved organic matter characteristics across a subtropical wetland's landscape: application of optical properties in the assessment of environmental dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GktbfL&md5=52f4d5e89bb3b62c38e4ce1ec225b0c2CAS |

Ziegler, S., and Benner, R. (2000). Effeects of solar radiation on dissolved organic matter cycling in a subtropical seagrass meadow. Limnology and Oceanography 45, 257–266.
Effeects of solar radiation on dissolved organic matter cycling in a subtropical seagrass meadow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVKrt74%3D&md5=2d9dcd2057d044633271eaf1ed005a83CAS |