Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Decomposition of native leaf litter by aquatic hyphomycetes in an alpine stream

Stephanie G. Suter A B , Gavin N. Rees B C , Garth O. Watson B , Phillip J. Suter A and Ewen Silvester A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Management and Ecology, La Trobe University, Albury-Wodonga Campus, Vic. 3690, Australia.

B CSIRO Land and Water/Murray–Darling Freshwater Research Centre, Wodonga, Vic. 3690, Australia.

C Corresponding author. Email: gavin.rees@latrobe.edu.au

Marine and Freshwater Research 62(7) 841-849 https://doi.org/10.1071/MF10268
Submitted: 28 October 2010  Accepted: 16 April 2011   Published: 25 July 2011

Abstract

Despite the recognised significance of hyphomycetes in the degradation of leaf litter in streams, few studies have been carried out in alpine environments and none in Australian alpine streams. We hypothesised that the fungal communities responsible for leaf decomposition would change over immersion time, and would respond differently at different sites and on different types of vegetation. Leaf bags containing Epacris glacialis (F. Muell.), Eucalyptus pauciflora (Sieber ex. Spreng) and Eucalyptus delegatensis (R.T. Baker) were deployed at different sites in a stream in the Victorian Alpine National Park, south-eastern Australia. Leaf colonisation was delayed for 2 weeks and decay constants for E. pauciflora and E. delegatensis were 0.004–0.005 and 0.006 respectively. Maximum fungal biomass on leaves was similar to that in previous published studies, whereas sporulation rates were two or three orders of magnitude lower, indicating a reduced reproductive effort. Sporulation and DNA-based studies combined showed that fungal communities on the decomposing leaf material changed over time and exhibited significant preferences for leaf type and study site. We have shown that aquatic hyphomycetes can degrade physically tough leaves of Australian alpine plant species, potentially contributing to pathways for particulate carbon to enter alpine-stream food webs.

Additional keywords: alpine, Australia, Eucalyptus spp., hyphomycetes, leaf decomposition, organic matter, stream ecosystems, T-RFLP.


References

Aimer, R. D., and Segedin, B. P. (1985). Some aquatic hyphomycetes from New Zealand streams. New Zealand Journal of Botany 23, 273–299.

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘PERMANOVA+ for Primer: Guide to Software and Statistical Methods.’ (Primer-E: Plymouth, UK.)

Bärlocher, F. (1992). ‘The Ecology of Aquatic Hyphomycetes.’ (Springer-Verlag: Berlin.)

Bärlocher, F. (2005a). Leaf mass loss estimated by litter bag technique. In ‘Methods to Study Litter Decomposition: a Practical Guide’. (Eds M. A. S. Graça, F. Bärlocher and M. O. Gessner.) pp. 37–42. (Springer: Dordrecht, The Netherlands.)

Bärlocher, F. (2005b). Sporulation by aquatic hyphomycetes. In ‘Methods to Study Litter Decomposition: a Practical Guide’. (Eds F. Bärlocher, M. A. S. Graça and M. O. Gessner.) pp. 185–188. (Springer: Dordrecht, The Netherlands.)

Bärlocher, F., Canhoto, C., and Graça, M. A. S. (1995). Fungal colonization of alder and eucalypt leaves in two streams in central Portugal. Archiv für Hydrobiologie 133, 457–470.

Bärlocher, F., Seena, S., Wilson, K. P., and Williams, D. D. (2008). Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshwater Biology 53, 368–379.

Boulton, A. J. (1991). Eucalypt leaf decomposition in an intermittent stream in south-eastern Australia. Hydrobiologia 211, 123–136.
Eucalypt leaf decomposition in an intermittent stream in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Brown, L. E., Hannah, D. M., and Milner, A. M. (2003). Alpine stream habitat classification: an alternative approach incorporating the role of dynamic water source contributions. Arctic, Antarctic, and Alpine Research 35, 313–322.
Alpine stream habitat classification: an alternative approach incorporating the role of dynamic water source contributions.Crossref | GoogleScholarGoogle Scholar |

Burdon, J. J., and Chilvers, G. A. (1974). Leaf parasites on altitudinal populations of Eucalyptus pauciflora (Sieb. ex Spreng). Australian Journal of Botany 22, 265–269.
Leaf parasites on altitudinal populations of Eucalyptus pauciflora (Sieb. ex Spreng).Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2009). ‘Climate Statistics for Australia.’ Available at http//bom.gov.au/climate/averages/tables/cw_083084.shtml [Verified 16 February 2009].

Canhoto, C., and Graça, M. A. S. (1996). Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333, 79–85.
Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsV2kurg%3D&md5=aa04fbf3ae9294dd32c40e78399fbc21CAS |

Canhoto, C., and Graça, M. A. S. (1999). Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37, 163–172.
Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar |

Casas, J. J., and Descals, E. (1997). Aquatic hyphomycetes from Mediterranean streams contrasting in chemistry and riparian canopy. Limnetica 13, 45–55.

Clarke, K. R., and Warwick, R. M. (2001). ‘Change in Marine Communities: an Approach to Statistical Analysis and Interpretation.’ (Primer-E Ltd: Plymouth, UK.)

Costin, A. B. (1989). The alps in a global perspective. In ‘The Scientific Significance of the Australian Alps’. (Ed. R. Good.) pp. 7–20. (Australian Alps National Parks Liaison Committee: Canberra.)

Cowling, S. W., and Waid, J. S. (1963). Aquatic hyphomycetes in Australia. Australian Journal of Science 26, 122–123.

Cullen, P., and Norris, R. H. (1989). Significance of lakes and rivers in the Australian mainland alps. In ‘The Scientific Significance of the Australian Alps’. (Ed. R. Good.) pp. 281–296. (Australian Alps National Parks Liaison Committee: Canberra.)

Dang, C. K., Gessner, M. O., and Chauvet, E. (2007). Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycologia 99, 24–32.
Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter.Crossref | GoogleScholarGoogle Scholar |

Gessner, M. O. (1997). Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica 13, 33–44.

Gessner, M. O. (2005). Ergosterol as a measure of fungal biomass. In ‘Methods to Study Litter Decomposition: a Practical Guide’. (Eds M. A. S. Graça, F. Bärlocher and M. O. Gessner.) pp. 189–196. (Springer: Dordrecht, The Netherlands.)

Gessner, M. O., and Chauvet, E. (1993). Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology 59, 502–507.
| 1:CAS:528:DyaK3sXhsVeisbo%3D&md5=dd3dada802ef8f87b7322fcae270495bCAS |

Gessner, M. O., and Robinson, C. T. (2003). Aquatic hyphomycetes in alpine streams. In ‘Ecology of a Glacial Floodplain’. (Eds J. V. Ward and U. Uehlinger.) pp. 123–127. (Kluwer: Dordrecht, The Netherlands.)

Gonçalves, A. L., Gama, A. M., Ferreira, V., Graça, M. A. S., and Canhoto, C. (2007). The breakdown of blue gum (Eucalyptus globulus Labill.) bark in a Portuguese stream. Fundamental and Applied Limnology Archiv für Hydrobiologie 168, 307–315.
The breakdown of blue gum (Eucalyptus globulus Labill.) bark in a Portuguese stream.Crossref | GoogleScholarGoogle Scholar |

McDougall, K. (1982). ‘The Alpine Vegetation of the Bogong High Plains.’ (Ministry for Conservation: Melbourne.)

Mesquita, A., Pascoal, C., and Cássio, F. (2007). Assessing effects of eutrophication in streams based on breakdown of eucalypt leaves. Fundamental and Applied Limnology Archiv für Hydrobiologie 168, 221–230.
Assessing effects of eutrophication in streams based on breakdown of eucalypt leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Grt7g%3D&md5=9c230cb268f78046a456b7d5e795fd4dCAS |

Nikolcheva, L. G., and Bärlocher, F. (2005a). Molecular approaches to estimate fungal diversity. I. Terminal fragment length polymorphism (T-RFLP). In ‘Methods to Study Litter Decomposition: a Practical Guide’. (Eds M. A. S. Graça, F. Bärlocher and M. O. Gessner.) pp. 169–176. (Springer: Dordrecht, The Netherlands.)

Nikolcheva, L. G., and Bärlocher, F. (2005). Seasonal and substrate preference of fungi colonizing leaves in streams: traditional versus molecular evidence. Environmental Microbiology 7, 270–280.
Seasonal and substrate preference of fungi colonizing leaves in streams: traditional versus molecular evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslSltLw%3D&md5=9fb1cae17dc0aeb3b76074415cd1b622CAS |

Price, I. P., and Talbot, P. H. B. (1966). An aquatic hyphomycete in a lignocolous habitat. Australian Journal of Botany 14, 19–23.
An aquatic hyphomycete in a lignocolous habitat.Crossref | GoogleScholarGoogle Scholar |

Rees, G. N., Baldwin, D. S., Watson, G. O., Perryman, S., and Nielsen, D. L. (2004). Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 86, 339–347.
Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics.Crossref | GoogleScholarGoogle Scholar |

Robinson, C. T., and Gessner, M. O. (2000). Nutrient addition accelerates leaf breakdown in an alpine spring brook. Oecologia 122, 258–263.
Nutrient addition accelerates leaf breakdown in an alpine spring brook.Crossref | GoogleScholarGoogle Scholar |

Shearer, C. A., Descals, E., Kohlmeyer, B., Kohlmeyer, J., Marvanová, L., et al. (2007). Fungal biodiversity in aquatic habitats. Biodiversity and Conservation 16, 49–67.
Fungal biodiversity in aquatic habitats.Crossref | GoogleScholarGoogle Scholar |

Silvester, E. (2009). Ionic regulation in an alpine peatland in the Bogong High Plains, Victoria, Australia. Environmental Chemistry 6, 424–431.
Ionic regulation in an alpine peatland in the Bogong High Plains, Victoria, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSkurnJ&md5=8398860ec8bbbbfd1428f49b7a266f76CAS |

Slatyer, R. O. (1989). Alpine and valley bottom treelines. In ‘The Scientific Significance of the Australian Alps’. (Ed. R. Good.) pp. 169–186. (Australian Alps National Parks Liaison Committee: Canberra.)

Suberkropp, K. (1992). Interactions with invertebrates. In ‘The Ecology of Aquatic Hyphomycetes’. (Ed. F. Bärlocher.) pp. 118–134. (Springer-Verlag: Berlin.)

Suberkropp, K., and Chauvet, E. (1995). Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76, 1433–1445.
Regulation of leaf breakdown by fungi in streams: influences of water chemistry.Crossref | GoogleScholarGoogle Scholar |

Thomas, K. (1992). The ecology of aquatic hyphomycetes in an Australian upland stream. Ph.D. Thesis, Australian National University.

Thomas, K., Chilvers, G. A., and Norris, R. H. (1989). Seasonal occurrence of conidia of aquatic hyphomycetes (fungi) in Lees Creek, Australian Capital Territory. Australian Journal of Marine and Freshwater Research 40, 11–23.
Seasonal occurrence of conidia of aquatic hyphomycetes (fungi) in Lees Creek, Australian Capital Territory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVCrtL0%3D&md5=6b34f478369dfc2fe0b2038fb14e006dCAS |

Thomas, K., Chilvers, G. A., and Norris, R. H. (1992). Aquatic hyphomycetes from different substrates; substrate preference and seasonal occurrence. Australian Journal of Marine and Freshwater Research 43, 491–509.
Aquatic hyphomycetes from different substrates; substrate preference and seasonal occurrence.Crossref | GoogleScholarGoogle Scholar |

Ward, J. V. (1994). Ecology of alpine streams. Freshwater Biology 32, 277–294.
Ecology of alpine streams.Crossref | GoogleScholarGoogle Scholar |

Williams, D. D., Wahren, H., and Ashton, D. (2008). ‘The Ecology of Alpine and Subalpine Ecosystems in Victoria.’ (La Trobe University: Melbourne.)

Woods, P. V., and Raison, R. J. (1983). Decomposition of litter in sub-alpine forests of Eucalyptus delegatensis, E. pauciflora and E. dives. Australian Journal of Ecology 8, 287–299.
Decomposition of litter in sub-alpine forests of Eucalyptus delegatensis, E. pauciflora and E. dives.Crossref | GoogleScholarGoogle Scholar |