Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Diversity and distribution of large branchiopods in Kiskunság (Hungary) in relation to local habitat and spatial factors: implications for their conservation

Liesbet Boven A B , Bram Vanschoenwinkel A , Els R. De Roeck A , Ann Hulsmans A and Luc Brendonck A
+ Author Affiliations
- Author Affiliations

A Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.

B Corresponding author. Email: liesbet.boven@bio.kuleuven.be

Marine and Freshwater Research 59(10) 940-950 https://doi.org/10.1071/MF08154
Submitted: 13 May 2007  Accepted: 8 August 2008   Published: 27 October 2008

Abstract

Large branchiopods are threatened worldwide by the loss and degradation of their temporary aquatic habitats owing to drainage and intensive agriculture. Sound ecological knowledge of their diversity and distribution is a prerequisite to formulate effective conservation measures. In the present study, large branchiopods were collected from 82 temporary freshwater pools belonging to five habitat types in Kiskunság (Hungary). Dormant propagule bank analysis complemented the field survey. Eleven species were found, with large branchiopods occurring in more than half of the study systems. The high regional species richness and occurrence frequency of large branchiopods make Kiskunság a true ‘hot spot’ of large branchiopod diversity. The local environment was more important than spatial factors (isolation) in explaining the presence of the most common species. Dispersal was most likely not limiting for the large branchiopods in the study area and colonisation success of different species was differentially affected by local conditions, possibly invertebrate predation risk and hydroperiod. Meadow pools and wheel tracks contributed most to regional species richness through the presence of rare and exclusive species. To conserve branchiopod diversity, we stress the importance of high habitat diversity in the landscape and the need to conserve neglected habitats such as wheel tracks.

Additional keywords: Anostraca, habitat size, Laevicaudata, Notostraca, Spinicaudata, transparency, vegetation cover.


Acknowledgements

This research was funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen). We thank the Kiskunság National Park for giving permission to sample the study pools and the Hungarian National History Museum for logistic support. We very much appreciated the field assistance of Sara Soentjens and many others. We also thank Dr Erich Eder and one anonymous referee for valuable comments on earlier versions of the manuscript.


References

Al-Tikirity, M. R. , and Grainger, J. N. R. (1990). The effect of temperature and other factors on the hatching of the resting eggs of Tanymastix stagnalis (L.) (Crustacea, Anostraca). Journal of Thermal Biology 15, 87–90.
Crossref | GoogleScholarGoogle Scholar | Belk D. (1998). Global status and trends in ephemeral pool invertebrate conservation: implications for Californian fairy shrimp. In ‘Ecology, Conservation and Management of Vernal Pool Ecosystems. Proceedings from a 1996 Conference’. (Eds C. W. Witham, E. Bauder, D. Belk, W. Ferrer and R. Ornduff.) pp. 147–150. (California Native Plant Society: Sacramento, CA.)

Biggs, J. , Bilton, D. , Williams, P. , Nicolet, P. , and Briggs, L. , et al. (2004). Temporary ponds of eastern Poland: an initial assessment of their importance for nature conservation. Archives des Sciences 57, 73–84.
Brendonck L. (1989). A review of the phyllopods (Crustacea: Anostraca, Notostraca, Conchostraca) of the Belgian fauna. In ‘Verhandelingen van het Symposium “Invertebraten van Belgie”’. (Eds K. Wouters and L. Baert.) pp. 129–135. (Royal Belgian Institute of Natural Sciences: Brussels.)

Brendonck, L. (1996). Diapause, quiescence, hatching requirements: what we can learn from large freshwater branchiopods (Crustacea: Branchiopoda: Anostraca; Notostraca, Conchostraca). Hydrobiologia 320, 85–97.
Crossref | GoogleScholarGoogle Scholar | Defaye D., Rabet N., and Thiéry A. (1998). ‘Atlas et Bibliographie des Crustacés Branchiopodes (Anostraca, Notostraca, Spinicaudata) de France Métropolitaine.’ (MNHN: Paris.)

Demeter, L. (2004). The spatial distribution of three species of Anostraca in the Ciuc basin. Studii şi Cercetări 9, 42–47.
Dumont H. J., and Negrea S. V. (2002). ‘Introduction to the Class Branchiopoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World.’ (Backhuys: Leiden.)

Eder, E. , and Hödl, W. (1996). Bestimmungshilfen zur Erkennung heimischer Anostraca, Notostraca und Conchostraca. Stapfia 42, 111–136.
Eder E., and Hödl W. (2002). Large freshwater branchiopods in Austria: diversity, threats and conservation status. In ‘Modern Approaches to the Study of Crustacea’. (Eds E. Escobar-Briones and F. Alvarez.) pp. 281–289. (Kluwer Academic/ Plenum Publishers: New York.)

Eder E., and Hödl W. (2003). ‘Catalogus Novus Faunae Austriae, No.1. Die Groß-Branchiopoden Österreichs, Crustacea: Branchiopoda excl. Cladocera. Biosystematics and Ecology Series No. 20.’ (Austrian Academy of Sciences Press: Wien.)

Eder, E. , Hödl, W. , and Gottwald, R. (1997). Distribution and phenology of large branchiopods in Austria. Hydrobiologia 359, 13–22.
Crossref | GoogleScholarGoogle Scholar | European Environment Agency (2004). High nature value farmland: characteristics, trends and policy challenges. European Environment Agency, Report No 1, Copenhagen.

Figuerola, J. , and Green, A. J. (2002). Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47, 483–494.
Crossref | GoogleScholarGoogle Scholar | Flössner D. (1972). ‘Krebstiere, Crustacea. Kiemen- und Blattfüsser, Branchiopoda, Fischläuse, Branchiura.’ (G. Fischer Verlag: Jena.)

Forró, L. (2000). Checklist, distribution maps and bibliography of large branchiopods in Hungary (Anostraca, Notostraca, Spinicaudata, Laevicaudata). Miscellanea Zoologica Hungarica 13, 47–58.
Hanski I., and Gaggiotti O. (2004). ‘Ecology, Genetics, and Evolution of Metapopulations.’ (Elsevier Academic Press: Amsterdam.)

Hathaway, S. A. , and Simovich, M. A. (1996). Factors affecting the distribution and co-occurrence of two Southern californian anostracans (Branchiopoda), Branchinecta sandiegonensis and Streptocephalus woottoni. Journal of Crustacean Biology 16, 669–677.
Crossref | GoogleScholarGoogle Scholar | Holyoak M., Leibold M. A., and Holt R. D. (2005). ‘Metacommunities: Spatial Dynamics and Ecological Communities.’ (Univerity of Chicago Press: Chicago, IL.)

Hössler, J. , Maier, G. , and Tessenow, U. (1995). Some notes on the ecology of a German Branchipus schaefferi population (Crustacea: Anostraca). Hydrobiologia 298, 105–112.
Crossref | GoogleScholarGoogle Scholar | Kerfoot W. C., and Lynch M. (1987). Branchiopod communities: associations with planktivorous fish in space and time. In ‘Predation: Direct and Indirect Impacts on Aquatic Communities’. (Eds W. C. Kerfoot and A. Sih.) pp. 367–378. (University Press New England: Hanover.)

King, J. L. , Simovich, M. A. , and Brusca, R. C. (1996). Species richness, endemism, and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328, 85–116.
Crossref | GoogleScholarGoogle Scholar | Lepš J., and Šmilauer P. (2003). ‘Multivariate Analysis of Ecological Data using CANOCO.’ (Cambridge University Press: Cambridge.)

Löffler, H. (1993). Anostraca, Notostraca, Laevicaudata and Spinicaudata of Pannonian region and in its Austrian area. Hydrobiologia 264, 169–174.
Crossref | GoogleScholarGoogle Scholar | McArthur R. H., and Wilson E. O. (1967). ‘The Theory of Island Biogeography. Monographs in Population Biology.’ (Princeton University Press: Princeton, NJ.)

Michels, E. , Cottenie, K. , Neys, L. , and De Meester, L. (2001). Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia 442, 117–126.
Crossref | GoogleScholarGoogle Scholar | Simovich M. A. (1998). Crustacean biodiversity and endemism in California’s ephemeral wetlands. In ‘Ecology, Conservation, and Management of Vernal Pool Ecosystems – Proceedings from a 1996 Conference’. (Eds C. W. Witham, E. T. Bauder, D. Belk, W. R. Ferren Jr and R. Ornduff.) pp. 107–118. (California Native Plant Society: Sacramento, CA.)

Skidds, D. E. , and Golet, F. C. (2005). Estimating hydroperiod suitability for breeding amphibians in southern Rhode Island seasonal forest ponds. Wetlands Ecology and Management 13, 349–366.
Crossref | GoogleScholarGoogle Scholar | US EPA (1985). Methods of measuring the acute toxicity of effluents to freshwater and marine organisms. U.S. Environmental Protection Agency, 600/4–85/013, Washington, DC.

Van de Meutter, F. , Stoks, R. , and De Meester, L. (2004). Behaviour linkage of pelagic prey and littoral predators: microhabitat selection of Daphnia induced by damselfly larvae. Oikos 107, 265–272.
Crossref | GoogleScholarGoogle Scholar | Waterkeyn A., Grillas P., De Roeck E. R. M., Boven L., and Brendonck L. (in press). Community structure and dynamics of large branchiopods in Mediterranean temporary wetlands: patterns and processes. Freshwater Biology.

Williams, C. B. (1943). Area and number of species. Nature 152, 264–267.
Crossref | GoogleScholarGoogle Scholar |

Williams, D. D. (1997). Temporary ponds and their invertebrate communities. Aquatic Conservation: Marine & Freshwater Ecosystems 7, 105–117.
Crossref | GoogleScholarGoogle Scholar |

Williams, P. , Biggs, J. , Fox, G. , Nicolet, P. , and Whitfield, M. (2001). History, origins and importance of temporary ponds. Freshwater Forum 17, 7–15.


Williams, P. , Whitfield, M. , Biggs, J. , Bray, S. , and Fox, G. , et al. (2004). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115, 329–341.
Crossref | GoogleScholarGoogle Scholar |

Woodward, B. D. , and Kiesecker, J. (1994). Ecological conditions and the notonectid – fairy shrimp interaction. The Southwestern Naturalist 39, 160–164.
Crossref | GoogleScholarGoogle Scholar |