Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effect of Ca2+ and Na+ on the sorption of three selected endocrine disruptors to sediments

Weiling Sun A B , Jinren Ni A B C , TianHong Li A B and Liying Sun A B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Engineering, Peking University, Beijing, 100871, China.

B The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.

C Corresponding author. Email: nijinren@iee.pku.edu.cn

Marine and Freshwater Research 60(7) 767-773 https://doi.org/10.1071/MF08063
Submitted: 29 February 2008  Accepted: 27 March 2009   Published: 28 July 2009

Abstract

Endocrine disruptors (EDs) are of global concern owing to their widespread occurrence and adverse effect on reproductive systems of animals and humans. The sorption behaviour of EDs is of fundamental importance in determining their transport and fate, but the influence of solution chemistry (ion species and concentration) on the sorption process is poorly understood. In the present study, the effects of Ca2+ and Na+ on the sorption of three selected EDs (bisphenol A, 17β-oestradiol and 17α-ethynylestradiol) to sediments were investigated. Fluorescence spectra of EDs were measured to reveal the interactions of ions with EDs. The sorption of EDs to sediments increases with rising ion concentration, and Ca2+ has a greater influence on sorption than Na+. Two characteristic excitation–emission peaks were found in the three-dimensional fluorescence spectra. For the selected EDs, a strong reduction in intensity of these two peaks was observed after the addition of ions. These results indicate that solution chemistry has a major influence on the sorption of selected EDs to sediments; greater sorption occurs with higher ion concentration.

Additional keywords: bisphenol A, 17α-ethynylestradiol, ion, 17β-oestradiol, sediment, sorption.


Acknowledgements

Financial support was from National Natural Science Foundation of China (Grant No. 40501063). The authors would like to thank the referees and Guest Editor for their constructive comments and suggestions. We are also grateful to Prof. Carolyn Oldham from the School of Environmental Systems Engineering at the University of Western Australia for her great help in English editing.


References

Backhus, D. A. , and Gschwend, P. M. (1990). Fluorescent polycyclic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environmental Science & Technology 24, 1214–1223.
Crossref | GoogleScholarGoogle Scholar | CAS |

Bautista-Toledo, I. B. , Ferro-García, M. A. , Rivera-Utrilla, J. , Moreno-Castilla, C. , and Fernández, F. J. V. (2005). Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environmental Science & Technology 39, 6246–6250.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Bellona, C. , Drewes, J. E. , Xu, P. , and Amy, G. (2004). Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review. Water Research 38, 2795–2809.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Boti, V. I. , Sakkas, V. A. , and Albanis, T. A. (2007). Measurement uncertainty arising from trueness of the analysis of two endocrine disruptors and their metabolites in environmental samples Part II. Solid-phase extraction from environmental natural waters. Journal of Chromatography. A 1146, 148–156.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Carter, C. W. , and Suffet, I. H. (1982). Binding of DDT to dissolved humic materials. Environmental Science & Technology 16, 735–740.
Crossref | GoogleScholarGoogle Scholar | CAS |

Gauthier, T. D. , Shane, E. C. , Guerin, W. F. , Seitz, W. R. , and Grant, C. L. (1986). Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environmental Science & Technology 20, 1162–1166.
Crossref | GoogleScholarGoogle Scholar | CAS |

Kashiwada, S. , Ishikawa, H. , Miyamoto, N. , Ohnishi, Y. , and Magara, Y. (2002). Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. Water Research 36, 2161–2166.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Kinniburgh, D. G. , van Riemsdijk, W. H. , Koopal, L. K. , Borkovec, M. , Benedetti, M. F. , and Avena, M. J. (1999). Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects 151, 147–166.
Crossref | GoogleScholarGoogle Scholar | CAS |

Kolpin, W. D. , Furlong, T. E. , Meyer, T. M. , Thurman, E. M. , and Zaugg, D. S. , et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology 36, 1202–1211.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Lai, K. M. , Johnson, K. L. , Scrimshaw, M. D. , and Lester, J. N. (2000). Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environmental Science & Technology 34, 3890–3894.
Crossref | GoogleScholarGoogle Scholar | CAS |

Lu, X. Q. , and Jaffe, R. (2001). Interaction between Hg (II) and natural dissolved organic matter: a fluorescence spectroscopy based study. Water Research 35, 1793–1803.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Lu, X. Q. , Vassallo, A. M. , and Johnson, W. D. (1997). Thermal stability of humic substances and their metal forms: an investigation using FTIR emission spectroscopy. Journal of Analytical and Applied Pyrolysis 43, 103–113.
Crossref | GoogleScholarGoogle Scholar | CAS |

Provenzano, M. R. , D’Orazio, V. , Jerzykiewicz, M. , and Senesi, N. (2004). Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources. Chemosphere 55, 885–892.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Schlautman, M. A. , and Morgan, J. J. (1993). Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environmental Science & Technology 27, 961–969.
Crossref | GoogleScholarGoogle Scholar | CAS |

Sonke, J. E. , and Salters, V. J. M. (2006). Lanthanide–humic substances complexation. I. Experimental evidence for lanthanide contraction effect. Geochimica et Cosmochimica Acta 70, 1495–1506.
Crossref | GoogleScholarGoogle Scholar | CAS |

Spark, K. M. , and Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. The Science of the Total Environment 298, 147–161.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Sun, W. L. , Ni, J. R. , O’Brien, K. C. , Hao, P. P. , and Sun, L. Y. (2005). Adsorption of bisphenol A on sediments in the Yellow River. Water, Air, and Soil Pollution 167, 353–364.
Crossref | GoogleScholarGoogle Scholar | CAS |

Sun, W. L. , Ni, J. R. , Xu, N. , and Sun, L. Y. (2007). Fluorescence of sediment humic substance and its effect on the sorption of selected endocrine disruptors. Chemosphere 66, 700–707.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Sutton, R. , and Sposito, G. (2005). Molecular structure in soil humic substances: the new view. Environmental Science & Technology 39, 9009–9015.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Urena-Amate, M. D. , Socias-Viciana, M. , Gonzalez-Pradas, E. , and Saifi, M. (2005). Effects of ionic strength and temperature on adsorption of atrazine by a heat treated kerolite. Chemosphere 59, 69–74.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Vethaak, A. D. , Lahr, J. , Schrap, S. M. , Belfroid, A. C. , and Rijs, G. B. J. , et al. (2005). An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere 59, 511–524.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Zhou, J. L. (2006). Sorption and remobilization behavior of 4-tert-octylphenol in aquatic systems. Environmental Science & Technology 40, 2225–2234.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |