Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Microsatellites-based genetic analysis of the Lophiidae fish in Europe

G. Blanco A , Y. J. Borrell A , M. E. Cagigas A , E. Vázquez A and J. A. Sánchez Prado A B
+ Author Affiliations
- Author Affiliations

A Laboratorio de Genética Acuícola, Departamento de Biología Funcional, Universidad de Oviedo, IUBA, 33071 Oviedo, Spain.

B Corresponding author. Email: jafsp@uniovi.es

Marine and Freshwater Research 59(10) 865-875 https://doi.org/10.1071/MF08038
Submitted: 19 February 2008  Accepted: 5 July 2008   Published: 27 October 2008

Abstract

The anglerfish species Lophius piscatorius and Lophius budegassa are among the most valuable fishes sought after by bottom fisheries in western and southern European waters. It is currently believed that there are two stocks for each of the two species, north and south, which determine their assessment and management. A genetic analysis using eight polymorphic microsatellite markers was carried out on samples collected from western European waters and the south-western Mediterranean Sea. The results strongly suggest that the boundary between northern and southern stocks is not genetically supported. However, populations were not genetically homogeneous. Besides a pattern of genetic differentiation between Mediterranean and the rest of the samples, the L. budegassa samples taken from the Spain Atlantic zone and from the Portugal Atlantic zone were genetically distinct, whereas the samples taken in the French Atlantic zone for the L. piscatorius species seem to be different from the rest of the samples under study. This can be indicative of a more subtle genetic structure that deserves more study for guaranteeing adequate fishery management of these species.

Additional keywords: anglerfish, fisheries, genetic differentiation.


Acknowledgements

This work was supported by the European Union through the grant UE-DG XIV (99–013) (GESSAN) and the Spanish Minister of Science and Technology (MCYT (REN2003–08610)). We thank all of the people involved in any way in the different tasks developed during the project. A special thanks to Manuela Azevedo and Rafael Duarte from the IPIMAR, Lisboa, Portugal; to Isabel Bruno and Jorge Landa from the IEO, Santander, Spain; to José Castro from the IEO, Vigo, Spain; to Paulino Lucio, Iñaki Quincoces and Marina Santurtún from the AZTI, Sukarrieta, Spain; to P. Connolly from the MI Abbotstown, Ireland and finally to the general project coordinator A. Celso Fariña from the IEO, A Coruña, Spain. We also thank Professor Andrew Boulton, Dr Burridge, Dr J. Ovenden and two anonymous referees for their useful comments about the manuscript.


References

Azevedo M., and Pereda P. (1994). Comparing monkfish (Lophius piscatorius and L. budegassa) abundance in ICES Division VIIIc by year and depth strata. ICES CM 1994/G:22. p. 7.

Bahri-Sfar, L. , Lemarie, C. , Ben Hassine, O. K. , and Bonhomme, F. (2000). Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proceedings of the Royal Society of London 267, 929–935.
Crossref | GoogleScholarGoogle Scholar | CAS | Caruso J. H. (1986). Lophiidae. In ‘Fishes of the North-eastern Atlantic and the Mediterranean’. Vol. III. (Eds P. J. Whitehead, M. L. Bauchot, J. Nielson and E. Tortonese.) pp. 1362–1363. (FAO, UNESCO: Paris.)

Carvalho G. R., and Pitcher T. J. (Eds) (1995). ‘Molecular Genetics in Fisheries.’ (Chapman and Hall: London, UK.)

Castillo, A. G. F. , Martinez, J. L. , and Garcia-Vazquez, E. (2004). Fine spatial structure of Atlantic hake (Merluccius merluccius) stocks revealed by variation at microsatellite loci. Marine Biotechnology 6, 299–306.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Excoffier L., Laval G., and Schneider S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online.

FAO (1994). ‘Informe de la consulta de expertos sobre la utilización y conservación de los recursos genéticos acuáticos.’ (Informe de Pesca FIRI/R491: Rome, Italy.)

FAO/PNUMA (1984). ‘Conservación de los recursos genéticos de los peces: problemas y recomendaciones. Informe de la consulta de expertos sobre los recursos genéticos de los peces.’ (FAO: Doc. Técn de Pesca.)

Goldstein, D. B. , Linares, A. R. , Cavalli-Sforza, L. L. , and Feldman, M. W. (1995). Genetic absolute dating based on microsatellites and origin of modern humans. Proceedings of the National Academy of Sciences of the United States of America 92, 6723–6727.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Goudet J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html.

Hauser L., and Ward R. D. (1998). Population identification in pelagic fish: the limits of molecular markers. In ‘Advances in Molecular Ecology’. (Ed. G. R. Carvalho.) pp. 191–216. (ISO Press: Amsterdam.)

Hislop, J. R. G. , Gallego, A. , Heath, M. R. , Kennedy, F. M. , Reeves, S. A. , and Wright, P. J. (2001). A synthesis of the early life history of the anglerfish, Lophius piscatorius (Linnaeus, 1758) in northern British waters. ICES Journal of Marine Science 58, 70–86.
Crossref | GoogleScholarGoogle Scholar | ICES (2004). Report of the Working Group on the Assessment of Southern Shelf Stocks of Hake, Monk and Megrim, ICES CM 2004/ACFM:02. (ICES: Copenhagen.)

ICES (2007). Report of the Working Group on the Assessment of Southern Shelf Stocks of Hake, Monk and Megrim, ICES CM 2007/ACFM:21. (ICES: Copenhagen.)

IFREMER (1997). International ageing workshop on European monkfish. Doc. Int. IFREMER-Lorient.

Johnson, M. S. , and Black, R. (1982). Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. Marine Biology (Berlin) 70, 157–164.
Crossref | GoogleScholarGoogle Scholar | Landa J. (2002). Modal ages in white anglerfish (Lophius piscatorius) from demersal trawl surveys in the northern Spanish continental shelf (ICES Divisions VIIIc and IXa). In ‘Working Document of the 4th International Ageing Workshop on European Anglerfish’, IPIMAR, Lisbon, 14–18 January 2002.

Landa J., Pereda P., Duarte R., and Azevedo M. (1998). Growth study of white and black anglerfish (Lophius piscatorius, L. budegassa) based on annual sampling from ICES Divisions VIIIc and IXa. ICES CM 1998/O:21. (ICES: Copenhagen.)

Landa J., Bruno I., Fariña A. C., and Autón U. (2001a). Movement rates and validation trials of growth of white anglerfish (Lophius piscatorius) in the Northeastern Atlantic based on mark-recapture experiments. ICES Council Meeting papers CM-2001/O:22. (ICES: Copenhagen.)

Landa, J. , Pereda, P. , Duarte, R. , and Azevedo, M. (2001b). Growth of anglerfish (Lophius piscatorius and L. budegassa) in the Atlantic Iberian waters. Fisheries Research 51, 363–376.
Crossref | GoogleScholarGoogle Scholar | Laurenson C. (1999). The monkfish Lophius piscatorius – its biology and fishery in Shetland waters. North Atlantic Fisheries College, Fisheries Development Note no. 9. Available at <http://www.nafc.ac.uk/Research/fdn9monkfish.pdf> [Verified October 2008]. (North Atlantic Fisheries College: Port Arthur, Scotland.)

Laurenson C., Priede I. G., Bullough L. W., and Napier I. R. (2001). Where are the mature anglerfish? The population biology of Lophius piscatorius in northern European waters. ICES Council Meeting Papers CM-2001/J:27. (ICES: Copenhagen.)

Laurenson, C. , Johnson, A. , and Priede, I. G. (2005). Movements and growth of monkfish Lophius piscatorius tagged at the Shetland Islands, northeastern Atlantic. Fisheries Research 71(2), 185–195.
Crossref | GoogleScholarGoogle Scholar | Nei M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York.)

O’Reilly, P. T. , Canino, M. F. , Bailey, K. M. , and Bentzen, P. (2004). Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Molecular Ecology 13, 1799–1814.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Pritchard J. K., Wen X., and Falush D. (2007). Documentation for structure software: version 2.2. Available at http://pritch.bsd.uchicago.edu/software [Verified 3 April 2007]. (University of Chicago: Chicago.)

Quesada, H. , Zapata, C. , and Alvarez, G. (1995). A multilocus allozyme discontinuity in the mussel Mytilus galloprovincialis: the interaction of ecological and life-history factors. Marine Ecology Progress Series 116, 99–115.
Crossref | GoogleScholarGoogle Scholar | CAS | Quincoces I. (2002). Crecimiento y reproducción de las especies Lophius budegassa Spinola 1807, y Lophius piscatorius Linneo 1758, del Golfo de Vizcaya. PhD thesis, Universidad País Vasco, Spain.

Quincoces I., Lucio P., and Santurtún M. (1998a). Biology of black anglerfish (Lophius budegassa) in the Bay of Biscay waters during 1996–1997. ICES CM 1998/O:47. (ICES: Copenhagen.)

Quincoces I., Santurtún M., and Lucio P. (1998b). Biological aspects of white anglerfish (Lophius piscatorius) in the Bay of Biscay (ICES Division VIIIa,b,d) in 1996–1997. ICES CM 1998/O:48. (ICES: Copenhagen.)

Rice, W. R. (1989). Analysing tables of statistical tests. Evolution 43, 223–225.
Crossref | GoogleScholarGoogle Scholar |

Roldán, M. I. , García-Marín, J. L. , Utter, F. M. , and Pla, C. (1998). Population genetic structure of European hake, Merluccius merluccius. Heredity 81, 327–334.
Crossref | GoogleScholarGoogle Scholar |

Ryman, N. (1997). Minimizing adverse effects of fish culture: understanding the genetics of populations with overlapping generations. ICES Journal of Marine Science 54, 1149–1159.


Swofford, D. L. , and Selander, R. B. (1981). BIOSYS: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. The Journal of Heredity 72, 281–287.


Taylor, M. S. , and Hellberg, M. E. (2003). Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299, 107–109.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Walsh, P. S. , Metzger, D. A. , and Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513.
PubMed |  CAS |

Waples, R. S. (1998). Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. The Journal of Heredity 89, 438–450.
Crossref | GoogleScholarGoogle Scholar |

Ward, R. D. (2000). Genetics in fisheries management. Hydrobiologia 420, 191–201.
Crossref | GoogleScholarGoogle Scholar | CAS |

Ward, R. D. (2006). The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fisheries Research 80, 9–18.
Crossref | GoogleScholarGoogle Scholar |

Ward, R. D. , Woodwark, M. , and Skibinski, D. O. F. (1994). A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. Journal of Fish Biology 44, 213–232.
Crossref | GoogleScholarGoogle Scholar |

Weir, B. S. , and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Crossref | GoogleScholarGoogle Scholar |