Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Looking through glassfish: marine genetic structure in an estuarine species

Courtenay E. Mills A B , Wade L. Hadwen A and Jane M. Hughes A
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Griffith University, Nathan, Qld 4111, Australia.

B Corresponding author. Email: courtenay.mills@griffith.edu.au

Marine and Freshwater Research 59(7) 627-637 https://doi.org/10.1071/MF07215
Submitted: 8 November 2007  Accepted: 18 May 2008   Published: 24 July 2008

Abstract

Through the use of mitochondrial DNA (ATP8 gene), the prediction of intermediate genetic structuring was investigated in two species of estuarine glassfish (Ambassis marianus and Ambassis jacksoniensis) (Perciformes : Ambassidae) to determine the possibility of a generalised ‘estuarine’ genetic structure. Individuals were collected from estuaries in eastern Australia between Tin Can Bay (Queensland) in the north and Kempsey (New South Wales) in the south. Analysis of the haplotype frequencies found in this region suggested panmictic populations with star-like phylogenies with extremely high levels of genetic diversity, but with no correlation between geographic distance and genetic distance. Non-significant FST and ΦST suggested extensive dispersal among estuaries. However, Tajima’s D and Fu’s FS values suggest ‘mutation–genetic drift equilibrium’ has not been reached, and that population expansions occurring 262 000 (A. marianus) and 300 000 (A. jacksoniensis) years ago may obscure any phylogeographic structuring or isolation by distance. The finding of panmixia was contrary to the prediction of genetic structuring intermediate between that of marine fish (shallowly structured) and freshwater fish (highly structured), suggesting high dispersal capabilities in these species.

Additional keywords: ambassid, estuaries, phylogeography.


Acknowledgements

The authors thank Dan Schmidt and Joel Huey for helpful remarks on the initial manuscript, in addition to the two anonymous referees for their comments. James Fawcett, Ana Dobson and Nick Allan provided invaluable assistance in the field; and Matthew Baddock advised us with geological queries. The Griffith Geeks gave support in many areas of this project. The Australian Rivers Institute provided research and travel funds. Fish were sampled under Griffith University ethics permit AES/02/06/AEC, NSW Scientific Research Permit P06/0050 and Queensland Fisheries Permit #55263.


References

Able, K. W. (2005). A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuarine, Coastal and Shelf Science 64, 5–17.
Crossref | GoogleScholarGoogle Scholar | Allen G. R. (1991). ‘Field Guide to the Freshwater Fishes of New Guinea.’ (Christensen Research Institute: Madang, Papua New Guinea.)

Allen, G. R. , and Burgess, W. E. (1990). A review of the glassfishes (Chandidae) of Australia and New Guinea. Records of the Western Australian Museum 34, 139–206.
Allen G. R., Midgley H., and Allen M. (2002). ‘Freshwater Fishes of Australia.’ (Western Australian Museum: Perth.)

Altukhov, Y. P. , and Salmenkova, E. A. (2002). DNA polymorphism in population genetics. Russian Journal of Genetics 38, 989–1008.
Crossref | GoogleScholarGoogle Scholar | Bermingham E., McCafferty S., and Martin A. P. (1997). Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In ‘Molecular Systematics of Fishes’. (Eds T. Kocher and C. Stepian.) pp. 113–126. (Academic Press: San Diego, CA.)

Bernatchez, L. , and Wilson, C. C. (1998). Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology 7, 431–452.
Crossref | GoogleScholarGoogle Scholar | Gene Codes (2000). ‘Sequencher 4.1.’ (Gene Codes Corporation: Ann Arbour, MI.)

Grantham, B. A. , Eckert, G. L. , and Shanks, A. L. (2003). Dispersal potential of marine invertebrates in diverse habitats. Ecological Applications 13, 108–116.
Crossref | GoogleScholarGoogle Scholar | Pusey B., Kennard M., and Arthington A. (2004). ‘Freshwater Fishes of North-Eastern Australia.’ (CSIRO Publishing: Melbourne.)

Riginos, C. , and Nachman, M. W. (2001). Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Molecular Ecology 10, 1439–1453.
Crossref | GoogleScholarGoogle Scholar | PubMed | Schneider S., Roessli D., and Excoffier L. (2000). ‘Arlequin ver. 2.000. A Software for Population Genetics Analysis.’ (Genetics and Biometry Laboratory, University of Geneva: Geneva.)

Sheaves, M. , Johnston, R. , and Abrantes, K. (2007). Fish fauna of dry tropical and subtropical estuarine floodplain wetlands. Marine and Freshwater Research 58, 931–943.
Crossref | GoogleScholarGoogle Scholar |

Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science 236, 787–792.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279.
Crossref | GoogleScholarGoogle Scholar |

Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462.
PubMed |

Slatkin, M. , and Maddison, W. P. (1990). Detecting isolation by distance using phylogenies of genes. Genetics 126, 249–260.
PubMed |

Spear, S. F. , Peterson, C. R. , Matocq, M. D. , and Storfer, A. (2006). Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conservation Genetics. ,
Crossref | GoogleScholarGoogle Scholar |

Uthicke, S. , and Benzie, J. A. H. (2003). Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from the Indo-Pacific. Molecular Ecology 12, 2635–2648.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vrijenhoek, R. C. (1998). Conservation genetics of freshwater fish. Journal of Fish Biology 53, 394–412.


Ward, R. D. , and Elliot, N. G. (2001). Genetic population structure of species in the South East Fishery of Australia. Marine and Freshwater Research 52, 563–573.
Crossref | GoogleScholarGoogle Scholar |

Waters, J. M. , Dijkstra, L. H. , and Wallis, G. P. (2000). Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal? Molecular Ecology 9, 1815–1821.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Waters, J. M. , Allibone, R. M. , and Wallis, G. P. (2006). Geological subsidence, river capture, and cladogenesis of galaxiid fish lineages in central New Zealand. Biological Journal of the Linnean Society 88, 367–376.
Crossref | GoogleScholarGoogle Scholar |

Watts, R. J. , and Johnson, M. S. (2004). Estuaries, lagoons and enclosed embayments: habitats that enhance population subdivision of inshore fishes. Marine and Freshwater Research 55, 641–651.
Crossref | GoogleScholarGoogle Scholar |

Weir, B. S. , and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Crossref | GoogleScholarGoogle Scholar |

Williamson, C. E. (1993). Linking predation risk models with behavioral mechanisms: identifying population bottlenecks. Ecology 74, 320–331.
Crossref | GoogleScholarGoogle Scholar |

Wong, B. B. M. , Keogh, J. S. , and McGlashan, D. J. (2004). Current and historical patterns of drainage connectivity in eastern Australia inferred from population genetic structuring in a widespread freshwater fish Pseudomugil signifer (Pseudomugilidae). Molecular Ecology 13, 391–401.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wright, S. (1943). Isolation by distance. Genetics 28, 114–138.
PubMed |

Zardoya, R. , Castilho, R. , Grande, C. , Favre-Krey, L. , Caetano, S. , Marcato, S. , Krey, G. , and Patarnellos, T. (2004). Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Molecular Ecology 13, 1785–1798.
Crossref | GoogleScholarGoogle Scholar | PubMed |