Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A first approach to the usefulness of cytochrome c oxidase I barcodes in the identification of closely related delphinid cetacean species

A. R. Amaral A C , M. Sequeira B and M. M. Coelho A
+ Author Affiliations
- Author Affiliations

A Universidade de Lisboa, Faculdade de Ciências, Centro de Biologia Ambiental, Campo Grande, 1749-016 Lisboa, Portugal.

B Instituto de Conservação da Natureza, Rua de Santa Marta, 55, 1150-294 Lisboa, Portugal.

C Corresponding author. Email: aramaral@fc.ul.pt

Marine and Freshwater Research 58(6) 505-510 https://doi.org/10.1071/MF07050
Submitted: 9 March 2007  Accepted: 8 May 2007   Published: 25 June 2007

Abstract

The DNA barcode initiative has gained particular popularity as a promising tool to assist in species identification by using a single mitochondrial gene, cytochrome c oxidase I (COI). In some animal groups, COI barcodes have proved efficient in separating closely related taxa. However, several issues remain for discussion, namely how efficient this tool will be in animal groups with an unresolved taxonomy. Here, we examined COI sequences in delphinid cetaceans, a group where taxonomic uncertainty still exists. We analysed species belonging to the genera Stenella, Tursiops and Delphinus in the North-east Atlantic using cytochrome b gene sequences for comparison. We obtained values of COI interspecific genetic divergence ranging from 1.47% to 2.45%, which suggests a recent separation of the analysed taxa. S. coeruleoalba and D. delphis were the most similar species, with COI phylogenetic trees failing to separate them. On the other hand, the phylogenetic tree obtained with cytochrome b sequences correctly clustered species with high bootstrap support values. We thus consider that the application of COI barcodes in delphinid cetaceans should be done with caution; not only has the cytochrome b gene been shown to be phylogenetically more informative, but relying only on mitochondrial DNA genes alone may be problematic.

Extra keywords: bottlenose dolphin, common dolphin, cytochrome c oxidase I, Delphinidae, phylogenetic inference, striped dolphin.


Acknowledgements

We thank Jennifer Learmonth (SAC – Scottish Agricultural College and DEFRA), Ángela Llavona (Coordinadora para o Estudio dos Mamíferos Mariños), Marisa Ferreira (Instituto para a Conservação da Natureza) and Zoomarine for providing tissue samples.


References

Amaral, A. R. , Sequeira, M. , Cedeira-Martínez, J. , and Coelho, M. M. (2007). New insights on population genetic structure of Delphinus delphis from the northeast Atlantic and phylogenetic relationships with the genus inferred from two mitochondrial markers. Marine Biology ,
Crossref | GoogleScholarGoogle Scholar | Dizon A., Baker C. S., Cipriano F., Lento G., Palsboll P., and Reeves R., (2000). ‘Molecular Genetic Identification of Whales, Dolphins and Porpoises: Proceedings of a Workshop on the Forensic Use of Molecular Techniques to Identify Wildlife Products in the Market Place.’ NOAA Technical Memorandum NMFS NOAA-TM-NMFS-SWFSC-286. (National Oceanic and Atmospheric Administration: La Jolla, CA.)

Funk, D. J. , and Omland, K. E. (2003). Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics 34, 397–423.
Crossref | GoogleScholarGoogle Scholar | Hoelzel A. R., Goldsworthy S. D., and Fleischer R. C. (2002). Population genetic structure. In ‘Marine Mammal Biology, An Evolutionary Approach’. (Ed. A. R. Hoelzel.) pp. 325–352. (Blackwell Science: Oxford.)

Hogg, I. D. , and Hebert, P. D. N. (2004). Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology 82, 749–754.
Crossref | GoogleScholarGoogle Scholar | Perrin W. F., and Reeves R. R. (2004). Appendix 5: report of the working group on species- and subspecies-level taxonomy. In ‘Report of the Workshop on Shortcomings of Cetacean Taxonomy in Relation to Needs of Conservation and Management, April 30–May 2’. (Eds R. R. Reeves, W. F. Perrin, B. L. Taylor, C. S. Baker and S. L. Mesnick.) pp. 25–60. (National Oceanic and Atmospheric Administration: La Jolla, CA.)

Pichler, F. B. , Dawson, S. M. , Slooten, E. , and Baker, C. S. (1998). Geographic isolation of Hector's dolphin populations described by mitochondrial DNA sequences. Conservation Biology 12, 676–682.
Crossref | GoogleScholarGoogle Scholar | Rozen S., and Skaletsky H. J. (2000). Primer3 on WWW for general users and for biologist programmars. In ‘Bioinformatics Methods and Protocols: Methods in Molecular Biology’. (Eds S. Krawetz and S. Misener.) pp. 365–386. (Humana Press: Totowa, NJ.)

Rubinoff, D. (2006). Utility of mitochondrial DNA barcodes in species conservation. Conservation Biology 20, 1548–1549.
Crossref | GoogleScholarGoogle Scholar | PubMed | Swofford D. L. (2003). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).’ (Sinauer Associates: Sunderland, MA.)

Ward, R. D. , Zemlak, T. S. , Innes, B. H. , Last, P. R. , and Hebert, P. D. N. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1847–1857.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Witt, J. D. S. , Threloff, D. L. , and Hebert, P. D. N. (2006). DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15, 3073–3082.
PubMed |