Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Flushing time of solutes and pollutants in the central Great Barrier Reef lagoon, Australia

Yonghong Wang A B E , Peter V. Ridd B , Mal L. Heron B , Thomas C. Stieglitz B C and Alan R. Orpin B D
+ Author Affiliations
- Author Affiliations

A College of Marine Geoscience, Ocean University of China, Qingdao 266003, China.

B School of Mathematics, Physics and Information Technology, James Cook University, Townsville, Qld 4811, Australia.

C Australian Institute of Marine Science, PMB 3, MC, Townsville, Qld 4810, Australia.

D NIWA, Private Bag 14-901, Kilbirnie, Wellington, New Zealand.

E Corresponding author. Email: yonghong.wang@jcu.edu.au

Marine and Freshwater Research 58(8) 778-791 https://doi.org/10.1071/MF06148
Submitted: 16 August 2006  Accepted: 30 July 2007   Published: 27 August 2007

Abstract

The flushing time of the central Great Barrier Reef lagoon was determined by using salinity as a tracer and developing both an exchange model and a diffusion model of the shelf exchange processes. Modelling suggests that the cross-shelf diffusion coefficient is approximately constant for the outer half of the lagoon but decays rapidly closer to the coast. The typical outer-shelf diffusion coefficient is ~1400 m2 s–1, dropping to less than 100 m2 s–1 close to the coast. Flushing times are around 40 days for water close to the coast and 14 days for water in the offshore reef matrix.

Additional keywords: diffusion coefficient, exchange and diffusion model.


Acknowledgements

This study was supported by the Australian Research Council Discovery Grant DP0558516. Financial support was also given by National Natural Science Foundation of China grant 40406015. Martial Depczynski, Chris Fulton, and James Whinney helped with the collection of the salinity data. Severine Thomas and three anonymous reviewers greatly helped improve this manuscript.


References

Andrews, J. C. (1983). Water masses, nutrient levels and seasonal drift on the outer central Queensland shelf (Great Barrier Reef). Marine and Freshwater Research 34, 821–834.
Crossref | GoogleScholarGoogle Scholar | Baker J. T. (2003). A report on the study of land-sourced pollutants and impacts on water quality in and adjacent to the Great Barrier Reef. Intergovernmental Steering Committee, GBR Water Quality Action Plan, Premier’s Department, Queensland Government, Brisbane.

Brinkman, R. , Wolanski, E. J. , Deleersnijder, E. , McAllister, F. , and Skirving, W. J. (2002). Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuarine, Coastal and Shelf Science 54, 655–668.
Crossref | GoogleScholarGoogle Scholar | da Silva A., Young A. C., and Levitus S. (1994). ‘Atlas of Surface Marine Data 1994, Volume 1: Algorithms and Procedures.’ NOAA Atlas NESDros. Inf. Serv. 6. (US Department of Commerce: Washington, DC.)

Fischer H. B., List E. J., Koh R. C. Y., Imberger J., and Brooks N. H. (1979). ‘Mixing in Inland and Coastal Waters.’ (Academic Press: London.)

Furnas M. (2003). ‘Catchments and Corals: Terrestrial Runoff to the Great Barrier Reef.’ (Australian Institute of Marine Science and CRC Reef Research Centre: Townsville, Australia.)

Geyer W. R., Morris J. T., Pahl F. G., and Jay D. A. (2000). Interaction between physical processes and ecosystem structure: a comparative approach. In ‘A Synthetic Approach to Research and Practice’. (Ed. J. E. Hobbie.) pp. 177–206. (Island Press: Washington, DC.)

Gibson J. K., Kallberg P., Uppaa S., Hernandez A., Nomura A., and Serrano E. (1997). ECMWF Re-analysis project, 1. ERA description, Project Report Series, European Center for Medium range Weather Forecasting (ECMWF) report, July 1997.

Hancock, G. J. , Webster, I. T. , and Stieglitz, T. C. (2006). Horizontal mixing of Great Barrier Reef waters: offshore diffusivity determined from radium isotope distribution. Journal of Geophysical Research 111, C12019.
Crossref | GoogleScholarGoogle Scholar | Josey S. A., Kent E. C., and Taylor P. K. (1998). The Southampton Oceanography Centre (SOC) Ocean–Atmosphere Heat, Momentum and Freshwater Flux Atlas. Southampton Oceanography Centre Report 6, Southampton, UK. Available online at: http://www.soc.soton.ac.uk/JRD/MET/PDF/soc-flux-atlas.pdf (verified August 2007).

Kalnay, E. , Kanamistu, M. , Kistler, R. , Collins, W. , Deaven, D. , Gandin, L. , and Iredell, M. , et al. (1996). The NCEP/NCAR reanalysis project Bulletin of the American Meteorological Society 77, 437–471.
Crossref | GoogleScholarGoogle Scholar | Wolanski E., and Jones M. (1979). Biological, chemical and physical observations in inshore waters of the the Great Barrier Reef, North Queensland, 1979. Australian Institute of Marine Science, Data Report, Oceanography Series No.2.

Wolanski, E. , and Jones, M. (1981). Physical properties of Great Barrier Reef Lagoon Waters near Townsville. I. Effects of Burdekin River floods. Australian Journal of Marine and Freshwater Research 32, 305–319.
Crossref | GoogleScholarGoogle Scholar |

Wolanski, E. , and Pickard, G. L. (1985). Long-term observations of currents on the central Great Barrier Reef continental shelf. Coral Reefs 4, 47–57.
Crossref | GoogleScholarGoogle Scholar |

Wolanski, E. , Asaeda, T. , Tanaka, A. , and Deleersnijder, E. (1996). Three-dimensional island wakes in the field, laboratory and numerical models. Continental Shelf Research 16, 1437–1452.
Crossref | GoogleScholarGoogle Scholar |

Wolanski, E. , Richmond, R. , McCook, L. , and Sweatman, H. (2003). Mud, marine snow and coral reefs. American Scientist 91, 44–51.
Crossref | GoogleScholarGoogle Scholar |