Age under-estimation in New Zealand porbeagle sharks (Lamna nasus): is there an upper limit to ages that can be determined from shark vertebrae?
Malcolm P. Francis A D , Steven E. Campana B and Cynthia M. Jones CA National Institute of Water and Atmospheric Research Ltd, Private Bag 14901, Wellington, New Zealand.
B Bedford Institute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia B2Y 4A2, Canada.
C Old Dominion University, Norfolk, VA 23529-0456, USA.
D Corresponding author. Email: m.francis@niwa.co.nz
Marine and Freshwater Research 58(1) 10-23 https://doi.org/10.1071/MF06069
Submitted: 28 April 2006 Accepted: 16 October 2006 Published: 30 January 2007
Abstract
Annual deposition of growth bands in vertebrae has been validated for many shark species, and is now widely regarded as the norm. However, vertebrae are part of the shark’s axial skeleton, and band deposition may stop in old sharks when somatic growth ceases. We aged vertebral sections from New Zealand porbeagle sharks (Lamna nasus) under reflected white light and using X-radiographs. Bomb radiocarbon assays supported vertebral age estimates up to ~20 years, but not at older ages. The results suggest that older porbeagles were under-aged by as much as 50% from vertebral band counts, presumably because band width declined to a point where it became unresolvable. This has important implications for growth studies on other long-lived sharks. Estimated ages at sexual maturity were 8–11 years for males and 15–18 years for females, and longevity may be ~65 years. New Zealand and North Atlantic porbeagles differ in these parameters, and in length at maturity and maximum length, suggesting genetic isolation of the two populations.
Additional keywords: bomb radiocarbon, longevity, maturity, validation.
Acknowledgements
We thank New Zealand Ministry of Fisheries observers for collecting vertebral samples and associated data from tuna longliners, and Caoimhghin Ó Maolagáin (NIWA) for preparing the vertebral sections, X-radiographs and images. Warren Joyce prepared the samples for radiocarbon assay, and Lisa Natanson and Silver Bishop provided valuable input and advice on reading vertebrae. We thank the staff of NOSAMS at WHOI for their expertise in carrying out the radiocarbon assays. Helpful comments were received from two anonymous reviewers. Funding was provided by the Ministry of Fisheries under project TUN2002/01, and National Science Foundation grant OCE9985884 to SEC and CMJ.
Aasen, O. (1963). Length and growth of the porbeagle (Lamna nasus, Bonnaterre) in the North West Atlantic. Fiskerdirektoratets Skrifter Serie Havundersøkelser 13(6), 20–37.
Beamish, R. J. , and McFarlane, G. A. (1983). The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society 112, 735–743.
| Crossref | GoogleScholarGoogle Scholar |
Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Campana, S. E. , Natanson, L. J. , and Myklevoll, S. (2002a). Bomb dating and age determination of large pelagic sharks. Canadian Journal of Fisheries and Aquatic Sciences 59, 450–455.
| Crossref | GoogleScholarGoogle Scholar |
Druffel, E. M. (1989). Decadal time scale variability of ventilation in the North Atlantic: high-precision measurement of bomb radiocarbon in banded corals. Journal of Geophysical Research 94, 3271–3285.
Hesslein, R. H. , Hallard, K. A. , and Ramlal, P. (1993). Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences 50, 2071–2076.
Jensen, C. F. , Natanson, L. J. , Pratt, H. L. , Kohler, N. E. , and Campana, S. E. (2002). The reproductive biology of the porbeagle shark, Lamna nasus, in the western North Atlantic Ocean. Fishery Bulletin 100, 727–738.
Kalish, J. M. , Johnston, J. M. , Smith, D. C. , Morison, A. K. , and Robertson, S. G. (1997). Use of the bomb radiocarbon chronometer for age validation in the blue grenadier Macruronus novaezelandiae. Marine Biology 128, 557–563.
| Crossref | GoogleScholarGoogle Scholar |
Moulton, P. L. , Walker, T. I. , and Saddlier, S. R. (1992). Age and growth studies of gummy shark, Mustelus antarcticus Günther, and school shark, Galeorhinus galeus (Linnaeus), from southern Australian waters. Australian Journal of Marine and Freshwater Research 43, 1241–1267.
| Crossref | GoogleScholarGoogle Scholar |
Parker, H. W. , and Stott, F. C. (1965). Age, size and vertebral calcification in the basking shark, Cetorhinus maximus (Gunnerus). Zoologische Mededelingen 40, 305–319.
Stevens, J. D. , Dunning, M. C. , and Machida, S. (1983). Occurrences of the porbeagle shark, Lamna nasus, in the Tasman Sea. Japanese Journal of Ichthyology 30, 301–307.
Yano, K. , and Abe, O. (1998). Depth measurements of tuna longline by using time-depth recorder. Nippon Suisan Gakkaishi 64, 178–188.
Yatsu, A. (1995b). The role of slender tuna, Allothunnus fallai, in the pelagic ecosystems of the South Pacific Ocean. Japanese Journal of Ichthyology 41, 367–377.