Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Age under-estimation in New Zealand porbeagle sharks (Lamna nasus): is there an upper limit to ages that can be determined from shark vertebrae?

Malcolm P. Francis A D , Steven E. Campana B and Cynthia M. Jones C
+ Author Affiliations
- Author Affiliations

A National Institute of Water and Atmospheric Research Ltd, Private Bag 14901, Wellington, New Zealand.

B Bedford Institute of Oceanography, PO Box 1006, Dartmouth, Nova Scotia B2Y 4A2, Canada.

C Old Dominion University, Norfolk, VA 23529-0456, USA.

D Corresponding author. Email: m.francis@niwa.co.nz

Marine and Freshwater Research 58(1) 10-23 https://doi.org/10.1071/MF06069
Submitted: 28 April 2006  Accepted: 16 October 2006   Published: 30 January 2007

Abstract

Annual deposition of growth bands in vertebrae has been validated for many shark species, and is now widely regarded as the norm. However, vertebrae are part of the shark’s axial skeleton, and band deposition may stop in old sharks when somatic growth ceases. We aged vertebral sections from New Zealand porbeagle sharks (Lamna nasus) under reflected white light and using X-radiographs. Bomb radiocarbon assays supported vertebral age estimates up to ~20 years, but not at older ages. The results suggest that older porbeagles were under-aged by as much as 50% from vertebral band counts, presumably because band width declined to a point where it became unresolvable. This has important implications for growth studies on other long-lived sharks. Estimated ages at sexual maturity were 8–11 years for males and 15–18 years for females, and longevity may be ~65 years. New Zealand and North Atlantic porbeagles differ in these parameters, and in length at maturity and maximum length, suggesting genetic isolation of the two populations.

Additional keywords: bomb radiocarbon, longevity, maturity, validation.


Acknowledgements

We thank New Zealand Ministry of Fisheries observers for collecting vertebral samples and associated data from tuna longliners, and Caoimhghin Ó Maolagáin (NIWA) for preparing the vertebral sections, X-radiographs and images. Warren Joyce prepared the samples for radiocarbon assay, and Lisa Natanson and Silver Bishop provided valuable input and advice on reading vertebrae. We thank the staff of NOSAMS at WHOI for their expertise in carrying out the radiocarbon assays. Helpful comments were received from two anonymous reviewers. Funding was provided by the Ministry of Fisheries under project TUN2002/01, and National Science Foundation grant OCE9985884 to SEC and CMJ.


References

Aasen, O. (1963). Length and growth of the porbeagle (Lamna nasus, Bonnaterre) in the North West Atlantic. Fiskerdirektoratets Skrifter Serie Havundersøkelser 13(6), 20–37.
Ayers D., Francis M. P., Griggs L. H., and Baird S. J. (2004). Fish bycatch in New Zealand tuna longline fisheries, 2000–01 and 2001–02. New Zealand Fisheries Assessment Report No. 2004/46. Ministry of Fisheries, Wellington.

Beamish, R. J. , and McFarlane, G. A. (1983). The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society 112, 735–743.
Crossref | GoogleScholarGoogle Scholar | Cailliet G. M., and Goldman K. J., (2004). Age determination and validation in chondrichthyan fishes. In ‘The Biology of Sharks and Their Relatives’. (Eds J. C. Carrier, J. A. Musick and M. R. Heithaus.) pp. 399–447. (CRC Press: Boca Raton, FL.)

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Campana S. E., Marks L., Joyce W., and Harley S. (2001). Analytical assessment of the porbeagle shark (Lamna nasus) population in the Northwest Atlantic, with estimates of long-term sustainable yield. Research Document No. 2001/067. Canadian Science Advisory Secretariat, Ottawa, Ontario.

Campana, S. E. , Natanson, L. J. , and Myklevoll, S. (2002a). Bomb dating and age determination of large pelagic sharks. Canadian Journal of Fisheries and Aquatic Sciences 59, 450–455.
Crossref | GoogleScholarGoogle Scholar | Compagno L. J. V. (2001). Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Species Catalogue for Fishery Purposes No. 1, Vol. 2. FAO, Rome.

Coutin P. (1992). Sharks ... and more sharks. Australian Fisheries June 1992, 41–42.

Cox D. R., and Hinkley D. V. (1974). ‘Theoretical Statistics.’ (Chapman and Hall: London.)

Druffel, E. M. (1989). Decadal time scale variability of ventilation in the North Atlantic: high-precision measurement of bomb radiocarbon in banded corals. Journal of Geophysical Research 94, 3271–3285.
Gauld J. A. (1989). Records of porbeagles landed in Scotland, with observations on the biology, distribution and exploitation of the species. Scottish Fisheries Research Report No. 45. Department of Agriculture and Fisheries for Scotland.

Hesslein, R. H. , Hallard, K. A. , and Ramlal, P. (1993). Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences 50, 2071–2076.
Hurst R. J., Bagley N. W., Anderson O. F., Francis M. P., Griggs L. H., Clark M. R., Paul L. J., and Taylor P. R. (2000). Atlas of juvenile and adult fish and squid distributions from bottom and midwater trawls and tuna longlines in New Zealand waters. NIWA Technical Report No. 84. National Institute of Water and Atmospheric Research, Wellington.

Jensen, C. F. , Natanson, L. J. , Pratt, H. L. , Kohler, N. E. , and Campana, S. E. (2002). The reproductive biology of the porbeagle shark, Lamna nasus, in the western North Atlantic Ocean. Fishery Bulletin 100, 727–738.
Kalish J., and Johnston J. (2001). Determination of school shark age based on analysis of radiocarbon in vertebral collagen. In Use of the Bomb Radiocarbon Chronometer to Validate Fish Age’.(Ed. J. M. Kalish.) pp. 116–129. Final Report FRDC Project 93/109. Fisheries Research and Development Corporation, Canberra.

Kalish, J. M. , Johnston, J. M. , Smith, D. C. , Morison, A. K. , and Robertson, S. G. (1997). Use of the bomb radiocarbon chronometer for age validation in the blue grenadier Macruronus novaezelandiae. Marine Biology 128, 557–563.
Crossref | GoogleScholarGoogle Scholar | Lassey K. R., Manning M. R., Sparks R. J., and Wallace G. (1990). Radiocarbon in the Sub-tropical Convergence east of Tasmania – an interim report. Physical Sciences Report No. 11. DSIR, Lower Hutt, New Zealand.

Last P. R., and Stevens J. D. (1994). ‘Sharks and Rays of Australia.’ (CSIRO: Hobart.)

Moulton, P. L. , Walker, T. I. , and Saddlier, S. R. (1992). Age and growth studies of gummy shark, Mustelus antarcticus Günther, and school shark, Galeorhinus galeus (Linnaeus), from southern Australian waters. Australian Journal of Marine and Freshwater Research 43, 1241–1267.
Crossref | GoogleScholarGoogle Scholar | Natanson L. J., Kohler N. E., Ardizzone D., Cailliet G. M., Wintner S. P., and Mollet H. F. (2006). Validated age and growth estimates for the shortfin mako, Isurus oxyrinchus, in the North Atlantic Ocean. Environmental Biology of Fishes 77, 367–383.

Orsi A. H., and Whitworth T. (2005). ‘Hydrographic atlas of the World Ocean Circulation Experiment (WOCE). Volume 1: Southern Ocean.’ (WOCE International Project Office, University of Southampton: Southampton, UK.)

Parker, H. W. , and Stott, F. C. (1965). Age, size and vertebral calcification in the basking shark, Cetorhinus maximus (Gunnerus). Zoologische Mededelingen 40, 305–319.
Stevens J. D., and Wayte S. E. (1999). A review of Australia’s pelagic shark resources. FRDC Project No. 98/107. Fisheries Research and Development Corporation, Canberra.

Stevens, J. D. , Dunning, M. C. , and Machida, S. (1983). Occurrences of the porbeagle shark, Lamna nasus, in the Tasman Sea. Japanese Journal of Ichthyology 30, 301–307.
Sullivan K. J., Mace P. M., Smith N. W. M., Griffiths M. H., Todd P. R., Livingston M. E., Harley S., Key J. M., and Connell A. M. (Eds) (2005). Report from the Fishery Assessment Plenary, May 2005: stock assessments and yield estimates. Ministry of Fisheries: Wellington.

World Ocean Circulation Experiment (2005). WOCE Hydrographic Program: Pacific and Indian Atlases. Available online at: http://www-pord.ucsd.edu/whp_atlas//pacific/p06/sections/printatlas/P06_DELC14_final.jpg and http://www-pord.ucsd.edu/whp_atlas//pacific/p16/sections/printatlas/P16_DELC14_final.jpg [verified December 2006].

Yano, K. , and Abe, O. (1998). Depth measurements of tuna longline by using time-depth recorder. Nippon Suisan Gakkaishi 64, 178–188.
Yatsu A. (1995a). Zoogeography of the epipelagic fishes in the South Pacific Ocean and the Pacific sector of the Subantarctic, with special reference to the ecological role of slender tuna, Allothunnus fallai. Bulletin of the National Research Institute of Far Seas Fisheries No. 32.

Yatsu, A. (1995b). The role of slender tuna, Allothunnus fallai, in the pelagic ecosystems of the South Pacific Ocean. Japanese Journal of Ichthyology 41, 367–377.