Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Sulfidic materials in dryland river wetlands

S. Lamontagne A C D , W. S. Hicks B C , R. W. Fitzpatrick A C and S. Rogers A C
+ Author Affiliations
- Author Affiliations

A CSIRO Land and Water, Private Mail Bag No. 2, Glen Osmond, SA 5064, Australia.

B CSIRO Land and Water, GPO Box 1666 Canberra, ACT 2601, Australia.

C CRC LEME, CSIRO Exploration and Mining, PO Box 1130, Bentley, WA 6102, Australia.

D Corresponding author. Email: sebastien.lamontagne@csiro.au

Marine and Freshwater Research 57(8) 775-788 https://doi.org/10.1071/MF06057
Submitted: 11 April 2006  Accepted: 10 October 2006   Published: 28 November 2006

Abstract

Due to a combination of river regulation, dryland salinity and irrigation return, lower River Murray floodplains (Australia) and associated wetlands are undergoing salinisation. It was hypothesised that salinisation would provide suitable conditions for the accumulation of sulfidic materials (soils and sediments enriched in sulfides, such as pyrite) in these wetlands. A survey of nine floodplain wetlands representing a salinity gradient from fresh to hypersaline determined that surface sediment sulfide concentrations varied from <0.05% to ~1%. Saline and permanently flooded wetlands tended to have greater sulfide concentrations than freshwater ones or those with more regular wetting–drying regimes. The acidification risk associated with the sulfidic materials was evaluated using field peroxide oxidations tests and laboratory measurements of net acid generation potential. Although sulfide concentration was elevated in many wetlands, the acidification risk was low because of elevated carbonate concentration (up to 30% as CaCO3) in the sediments. One exception was Bottle Bend Lagoon (New South Wales), which had acidified during a draw-down event in 2002 and was found to have both actual and potential acid sulfate soils at the time of the survey (2003). Potential acid sulfate soils also occurred locally in the hypersaline Loveday Disposal Basin. The other environmental risks associated with sulfidic materials could not be reliably evaluated because no guideline exists to assess them. These include the deoxygenation risk following sediment resuspension and the generation of foul odours during drying events. The remediation of wetland salinity in the Murray–Darling Basin will require that the risks associated with disturbing sulfidic materials during management actions be evaluated.

Additional keywords: ASS, monosulfide, Murray–Darling Basin, pyrite, sulfide.


Acknowledgments

The authors acknowledge CRC LEME for funding this research. We would also like to thank the CSIRO Land and Water Adelaide Analytical Services Unit who did most of the soil analyses and Mark Raven (CSIRO) for the X-ray diffraction. Darren Baldwin, Leigh Sullivan and two anonymous reviewers provided many useful comments on earlier drafts of the manuscript.


References

Ahern C. R., Ahern M. R., and Powell B. (1998). Guidelines for sampling and analysis of lowland acid sulfate soils (ASS) in Queensland. Department of Natural Resources, Resources Sciences Centre, Indooroopilly. Available online at: http://www.nrm.qld.gov.au/land/ass/pdfs/sample_analysis_guide.pdf (verified November 2006).

Allison, G. B. , Cook, P. G. , Barnett, S. R. , Walker, G. R. , Jolly, I. D. , and Hughes, M. W. (1990). Land clearance and river salinisation in the western Murray Basin, Australia. Journal of Hydrology 119, 1–20.
Crossref | GoogleScholarGoogle Scholar | Andreae M. O., and Jaeschke W. A. (1992). Exchange of sulfur between biosphere and atmosphere over temperate and tropical regions. In ‘Sulfur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies’. (Eds R. W. Howarth, J. W. B. Stewart and M. V. Ivanov.) pp. 27–61. (Wiley: Chichester, UK.) Available online at: http://www.icsu-scope.org/downloadpubs/scope48/contents.html (verified November 2006).

APHA (1999). Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC.

Berner, R. A. (1984). Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605–615.
Crossref | GoogleScholarGoogle Scholar | Dent D. L. (1986). Acid sulphate soils: a baseline for research and development. International Institute for Land Reclamation and Improvement, Wageningen.

Dent, D. L. , and Pons, L. J. (1995). A world perspective on acid sulfate soils. Geoderma 67, 263–276.
Crossref | GoogleScholarGoogle Scholar | Hall K., Baldwin D. S., Rees G. N., and Richardson A. (2006). Distribution of sulfidic sediments in inland wetlands of New South Wales. Report to the NSW Environmental Trust. Murray–Darling Freshwater Research Centre, Wodonga.

Hart, B. T. , Bailey, P. , Edwards, R. , Hortle, K. , James, K. , McMahon, A. , Meredith, C. , and Swadling, K. (1991). A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210, 105–144.
Jolly I. D. (1996). The effects of river management on the hydrology and hydroecology of arid and semi-arid floodplains. In ‘Floodplain Processes’. (Eds M. G. Anderson, D. E. Walling and D. E. Bates.) pp. 577–609. (Wiley: New York.)

Lamers, L. P. M. , Van Roozendaal, S. M. E. , and Roelofs, J. G. M. (1998). Acidification of freshwater wetlands: combined effects of non-airborne sulfur pollution and desiccation. Water, Air, and Soil Pollution 105, 95–106.
Crossref | GoogleScholarGoogle Scholar | Lamontagne S., Hicks W. S., Fitzpatrick R. W., and Rogers S. (2004). Survey and description of sulfidic materials in wetlands of the lower River Murray floodplains: implications for floodplain salinity management. CRC LEME Open File Report 165. CSIRO Land and Water Technical Report No. 28/04. Available online at: http://www.clw.csiro.au/publications/scientific_reports.html (verified November 2006).

Lamontagne, S. , Leaney, F. W. , and Herczeg, A. L. (2006). Patterns in groundwater nitrogen concentration in the riparian zone of a large semi-arid river (River Murray, Australia). River Research and Applications 22, 39–54.
Crossref | GoogleScholarGoogle Scholar | Lewis R. J. (2000). ‘Sax’s Dangerous Properties of Industrial Materials.’ 10th edn. (Wiley: New York.)

Lomans, B. P. , Smolders, A. J. P. , Intven, L. , Pol, A. , Op den Camp, H. J. M. , and van der Drift, C. (1997). Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Applied and Environmental Microbiology 63, 4741–4747.
PubMed | Mackay N., Hillman T., and Rolls J. (1988). Water quality of the River Murray. Review of monitoring 1978–1986. Water quality report 1. Murray–Darling Basin Commission, Canberra.

McCarthy B., Conallin A., and Walsh R. (2003). Aquatic survey of Bottle Bend Lagoon, near Buronga NSW: salinisation and acidification impacts. A CRC for Freshwater Ecology Consultancy Report for NSW Murray Wetland Working Group Inc. Report No. 2/2003. Murray–Darling Freshwater Research Centre, Albury.

McDonald R. C., Isbell R. F., Speight J. G., Walker J., and Hopkins M. S. (1990). ‘Australian Soil and Land Survey Field Handbook.’ 2nd edn. (Inkata Press: Melbourne.)

National Working Party on Acid Sulfate Soils (1999). National strategy for the management of coastal acid sulfate soils. NSW Agriculture, Wollongbar. Available online at: http://www.mincos.gov.au/pdf/natass.pdf (verified November 2006).

Nielsen, D. L. , Brock, M. A. , Rees, G. N. , and Baldwin, D. S. (2003). Effects of increasing salinity on freshwater ecosystems in Australia. Australian Journal of Botany 51, 655–665.
Crossref | GoogleScholarGoogle Scholar | Nordstrom D. K. (1982). Aqueous pyrite oxidation and consequent formation of secondary iron minerals. In ‘Acid Sulfate Weathering’. Soil Science Society of America Special Publication No. 10. (Eds J. A. Kittrick, D. S. Fanning and L. R. Hossner.) pp. 37–56. (Soil Science Society of America: Madison, WI.)

NSW ASSMAC (1998). Acid sulfate soil manual. New South Wales Acid Sulfate Soil Management Advisory Committee. NSW Agriculture, Wollongbar.

Pinay, G. , Black, V. J. , Planty-Tabacchi, A. M. , Gumiero, B. , and Décamps, H. (2000). Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50, 163–182.
Crossref | GoogleScholarGoogle Scholar | Raven M. D. (1990). XPLOT version 3.2 user manual. Manipulation of X-ray powder diffraction data. CSIRO Division of Soils Technical Report No. 24/1990.

Rayment G. E., and Higginson F. R. (1992). ‘Australian Laboratory Handbook of Soil And Water Chemical Methods.’ (Inkata Press: Melbourne.)

Rengasamy, P. (2006). World salinisation with emphasis on Australia. Journal of Experimental Botany 57, 1017–1023.
Crossref | GoogleScholarGoogle Scholar | PubMed | River Murray Catchment Water Management Board (2003). Catchment water management plan for the River Murray in South Australia 2003–2008. Government of South Australia, Adelaide.

Schoeneberger P. J., Wysocki D. A., Benham E. C., and Broderson W. D. (2002). ‘Field Book for Describing and Sampling Soils, Version 2.0.’ (Natural Resources Conservation Service, National Soil Survey Center: Lincoln, NE.)

Sherrod, L. A. , Dunn, G. , Petersen, G. A. , and Kolberg, R. L. (2002). Inorganic carbon analysis by modified pressure-calcimeter method. Soil Science Society of America Journal 66, 299–305.
Soil Survey Staff (2003). ‘Keys to Soil Taxonomy.’ 9th edn. (United States Department of Agriculture, Soil Conservation Service: Blacksburg, VA.) Available online at: http://soils.usda.gov/technical/classification/tax_keys/ (verified November 2006).

Sullivan, L. A. , Bush, R. T. , and McConchie, D. (2000). A modified chromium reducible sulfur method for reduced inorganic sulfur: optimum reaction time in acid sulfate soil. Australian Journal of Soil Research 38, 729–734.
Crossref | GoogleScholarGoogle Scholar | Sullivan L. A., Bush R. T., and Fyfe D. (2002a). Acid sulfate soil drain ooze: distribution, behaviour and implications for acidification and deoxygenation of waterways. In ‘Acid Sulfate Soils in Australia and China’. (Eds C. Lin, M. D. Melville and L. A. Sullivan.) pp. 91–99. (Science Press: Beijing.)

Sullivan L. A., Bush R. T., and Ward N. J. (2002b). Sulfidic sediments and salinisation in the Murray–Darling Basin. In ‘Sustainable Management of Acid Sulfate Soils. Fifth International Conference on Acid Sulfate Soils, 25–30 August 2002, Tweed Heads, NSW. Part I’. (Eds B. C. T. Macdonald, A. F. Keene, G. Carlin and L. A. Sullivan.) pp. 196–197. (Acid Sulfate Soil Working Group, International Union of Soil Sciences.)

Sullivan L. A., Bush R. T., and Ward N. J. (2004). Sulfidic soils associated with salinity in the Murray–Darling Basin. In ‘SuperSoil 2004. Third Soil Science Conference of the Australian and New Zealand Societies of Soil Science, Sydney, Australia, 5–9 December 2004’.

Suter P. J., Goonan P. M., Beer J. A., and Thompson T. B. (1993). A biological and physico-chemical monitoring study of wetlands from the River Murray flood plain in South Australia. Australian Centre for Water Quality Research Report No. 7/93.

Walker K. F. (1992). The River Murray, Australia: A semi-arid lowland river. In ‘The Rivers Handbook’. (Eds P. Callow and G. E. Petts.) pp. 472–492. (Blackwell: Oxford.)

Walker K. F., Thoms M. C., and Sheldon F. (1992). Effects of weirs on the littoral environment of the River Murray, South Australia. In ‘River Conservation and Management’. (Eds P. J. Boon, P. Calow and G. E. Petts.) pp. 271–292. (Wiley: New York.)