Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Why otoliths? Insights from inner ear physiology and fisheries biology

Arthur N. Popper A D , John Ramcharitar B and Steven E. Campana C
+ Author Affiliations
- Author Affiliations

A Department of Biology and Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, MD 20742, USA.

B Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA.

C Marine Fish Division, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS B2Y 4A2, Canada.

D Corresponding author. Email: apopper@umd.edu

Marine and Freshwater Research 56(5) 497-504 https://doi.org/10.1071/MF04267
Submitted: 5 October 2004  Accepted: 2 March 2005   Published: 21 July 2005

Abstract

Otoliths are of interest to investigators from several disciplines including systematics, auditory neuroscience, and fisheries. However, there is often very little sharing of information or ideas about otoliths across disciplines despite similarities in the questions raised by different groups of investigators. A major purpose of this paper is to present otolith-related questions common to all disciplines and then demonstrate that the issues are not only similar but also that more frequent interactions would be mutually beneficial. Because otoliths evolved as part of the inner ear to serve the senses of balance and hearing, we first discuss the basic structure of the ear. We then raise several questions that deal with the structure and patterns of otolith morphology and how changes in otoliths with fish age affect hearing and balance. More specifically, we ask about the significance of otolith size and how this might affect ear function; the growth of otoliths and how hearing and balance may or may not change with growth; the significance of different otolith shapes with respect to ear function; the functional significance of otoliths that do not contact the complete sensory epithelium; and why teleost fishes have otoliths and not the otoconia found in virtually all other extant vertebrates.

Extra keywords: ageing, asteriscus, balance, biomechanics, ear, fish, hearing, lagena, lapillus, otoconia, saccule, sagitta, utricle.


References

Beamish, R. J. (1979). New information on the longevity of Pacific ocean perch (Sebastes alutus). Journal of the Fisheries Research Board of Canada 36, 1395–1400.
Bregman A. S. (1991). ‘Auditory Scene Analysis.’ (MIT Press: Cambridge.)

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Campana S. E. (2004). ‘Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean.’ (NRC Research Press: Ottawa, Ontario.)

Campana, S. E. , and Thorrold, S. R. (2001). Otoliths, increments and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences 58, 30–38.
Crossref | GoogleScholarGoogle Scholar | Chao L. N. (1978). A basis for classifying western Atlantic Sciaenidae. NOAA Technical Report Circular 415, Washington, DC.

Chapman, C. J. , and Hawkins, A. D. (1973). A field study of hearing in the cod, Gadus morhua L. Journal of Comparative Physiology 85, 147–167.
Crossref | GoogleScholarGoogle Scholar | Coffin A., Kelley M., Manley G. A., and Popper A. N. (2004). Evolution of sensory hair cells. In ‘Evolution of the Vertebrate Auditory System’. (Eds G. A. Manley, A. N. Popper and R. R. Fay.) pp. 55–94. (Springer: New York.)

Corwin J. T. (1981). Audition in elasmobranchs. In ‘Hearing and Sound Communication in Fishes’. (Eds W. N. Tavolga, A. N. Popper and R. R. Fay.) pp. 81–105. (Springer-Verlag: New York.)

Dunkelberger, D. G. , Dean, J. M. , and Watabe, N. (1980). The ultrastructure of the otolithic membrane and otolith in the juvenile mummichog, Fundulus heteroclitus. Journal of Morphology 163, 367–377.
Crossref | GoogleScholarGoogle Scholar | Fay R. R. (1988). ‘Hearing in Vertebrates, A Psychophysics Databook.’ (Hill-Fay Associates: Winnetka, IL.)

Fay R. R., and Megela Simmons A. (1999). The sense of hearing in fish and amphibians. In ‘Comparative Hearing: Fish and Amphibians’. (Eds R. R. Fay and A. N. Popper.) pp. 269–318. (Springer-Verlag: New York.)

Fay, R. R. , and Popper, A. N. (2000). Evolution of hearing in vertebrates: The inner ears and processing. Hearing Research 149, 1–10.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed | Iversen R. T. B. (1967). Response of the yellowfin tuna (Thunnus albacares) to underwater sound. In ‘Marine Biol.-Acoustics II’. (Ed. W. N. Tavolga.) pp. 105–121. (Pergamon Press: Oxford, UK.)

Kalmijn A. J. (1988). Hydrodynamic and acoustic field detection. In ‘Sensory Biology of Aquatic Animals’. (Eds J. Atema, R. R. Fay, A. N. Popper and W. N. Tavolga.) pp. 131–149. (Springer-Verlag: New York.)

Ladich F., and Popper A. N. (2004). Parallel evolution in fish hearing organs. In ‘Evolution of the Vertebrate Auditory System’. (Eds G. A. Manley, A. N. Popper and R. R. Fay.) pp. 95–127. (Springer: New York.)

Lanford, P. J. , Platt, C. , and Popper, A. N. (2000). Structure and function in the saccule of the goldfish (Carassius auratus): A model of diversity in the non-amniote ear. Hearing Research 143, 1–13.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed | Manley G. A., and Clack J. A. (2004). An outline of the evolution of vertebrate hearing organs. In ‘Evolution of the Vertebrate Auditory System’. (Eds G. A. Manley, A. N. Popper and R. R. Fay.) pp. 1–26. (Springer: New York.)

Manley G. A., Popper A. N., and Fay R. R. (Eds) (2004). ‘Evolution of the Vertebrate Auditory System.’ (Springer: New York.)

Mann, S. , Parker, S. B. , Ross, M. D. , Scarnulis, A. J. , and Williams, R. J. P. (1983). The ultrastructure of the calcium carbonate balance organs of the inner ear: an ultra-high resolution electron microscopy study. Proceedings of the Royal Society of London. Series B. Biological Sciences 218, 415–424.
Platt C. (1983). The peripheral vestibular system in fishes. In ‘Fish Neurobiology’. (Eds R. G. Northcutt and R. E. Davis.) pp. 89–124. (University of Michigan Press: Ann Arbor, MI.)

Platt, C. , and Popper, A. N. (1984). Variation in lengths of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. Scanning Electron Microscopy 1984, 1915–1924.
Popper A. N., and Fay R. R. (1999). The auditory periphery in fishes. In ‘Comparative Hearing: Fish and Amphibians’. (Eds R. R. Fay and A. N. Popper.) pp. 43–100. (Springer-Verlag: New York.)

Popper, A. N. , and Tavolga, W. N. (1981). Structure and function of the ear of the marine catfish, Arius felis. Journal of Comparative Physiology 144, 27–34.
Crossref | GoogleScholarGoogle Scholar | Popper A. N., Rogers P. H., Saidel W. M., and Cox M. (1988). The role of the fish ear in sound processing. In ‘Sensory Biology of Aquatic Animals’. (Eds J. Atema, R. R. Fay, A. N. Popper and W. N. Tavolga.) pp. 687–710. (Springer-Verlag: New York.)

Popper A. N., Fay R. R., Platt C., and Sand O. (2003). Sound detection mechanisms and capabilities of teleost fishes. In ‘Sensory Processing in Aquatic Environments’. (Eds S. P. Collin and N. J. Marshall.) pp. 3–38. (Springer-Verlag: New York.)

Ramcharitar, J. , and Popper, A. N. (2004). Masked auditory thresholds of sciaenid fishes: a comparative study. The Journal of the Acoustical Society of America 116, 1687–1691.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed | Retzius G. (1881). ‘Das Gehörorgan der Wirbelthiere.’ Vol. I. (Samson and Wallin: Stockholm.)

Rogers P. H., and Cox M. (1988). Underwater sound as a biological stimulus. In ‘Sensory Biology of Aquatic Animals’. (Eds J. Atema, R. R. Fay, A. N. Popper and W. N. Tavolga.) pp. 131–149. (Springer-Verlag: New York.)

Rogers, P. H. , Popper, A. N. , Cox, M. , and Saidel, W. M. (1988). Processing of acoustic signals in the auditory system of bony fish. The Journal of the Acoustical Society of America 83, 338–349.
PubMed | | PubMed | van Bergeijk W. A. (1967). The evolution of vertebrate hearing. In ‘Contributions to Sensory Physiology’. (Ed. W. D. Neff.) pp. 1–49. (Academic Press: New York.)

Wever E. G. (1974). The evolution of vertebrate hearing. In ‘Handbook of Sensory Physiology.Vol V/1 Auditory System’. (Eds W. D. Keidel and W. D. Neff.) pp. 423–454. (Springer-Verlag: Berlin.)