Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Seasonality in the deep sea and tropics revisited: what can otoliths tell us?

Beatriz Morales-Nin A C and Jacques Panfili B
+ Author Affiliations
- Author Affiliations

A IMEDEA (CSIC/UIB), Miquel Marques 21, 07190 Esporles, Spain.

B IRD, B.P. 1386, 18524 Dakar, Senegal.

C Corresponding author. Email: beatriz.morales@uib.es

Marine and Freshwater Research 56(5) 585-598 https://doi.org/10.1071/MF04150
Submitted: 13 July 2004  Accepted: 12 April 2005   Published: 21 July 2005

Abstract

The accepted idea that fish otoliths from supposedly aseasonal environments, such as the deep sea and tropics, do not present seasonal growth increments is questioned and re-evaluated. The main seasonal fluctuation in deep seas is a result of the transfer of organic material from the productive upper layers to the abyssal depths. There is some evidence for seasonal patterns of otolith growth, although the validation of seasonal structures is limited owing to the difficulties inherent in deep-water studies. Tropical regions have an extremely high diversity of aquatic environments but in fact very few are aseasonal, and almost all areas have strong hydrological seasons, mainly annual, interacting with temperature variations. These climatic fluctuations have undoubtedly an effect on otolith growth, therefore leading to a succession of different incremental zones. The lack of previous knowledge on this impact of seasonality is probably a result of the previous low level of exploitation or economic interest of target species, and consequently the absence of age-based assessments. This trend has now changed possibly as a result of the increased exploitation of the resources, and to the greater involvement of international and national fishery management bodies. The number of studies showing apparent or validated seasonal marks has recently increased for these environments.

Extra keywords: aseasonality, deep-sea environment, seasonal increment, state of the art, tropical environment, validation.


Acknowledgments

We would like to acknowledge C. Roy (IRD, Brest), J.-P. Rébert (IRD, Paris) and J. Ruiz (ICMAN, Cadiz) for their help providing information on world climatic variations. We thank also Ms S. Swan and specially Dr J. M. Gordon (SAMS, UK) for their help in providing information on deep-sea fisheries and on Macrourids. D. Tracey (NIWA, New Zealand) who has kindly made available information in NIWA Reports is thanked with P. McMillan (NIWA, New Zealand) for the image and details used in Fig. 3. P. Tugores (IMEDEA) is thanked for technical assistance and D. Ponton (IRD, New-Caledonia) for helping with bibliography. We acknowledge R. Britton (Britton Traductions, France) for correcting the English and for constructive remarks on the article. Finally we would like also to acknowledge three reviewers and A. J. Fowler and S. E. Campana for constructive comments on a previous version of the manuscript.


References

Aguayo, M. H. , Gili, R. V. , and Erbs, V. G. (1987). Estudio de edad y crecimiento en sardina (Sardinops sagax) del norte de Chile. Investigacion Pesquera 34, 85–98.[In Spanish]
Angel M. V. (2003). The pelagic environment of the open ocean. In ‘Ecosystems of the Deep Oceans’. (Ed. P. A. Tyler.) pp. 39–80. (Elsevier: Southampton.)

Baker, M. S. , and Wilson, C. A. (2001). Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico. Limnology and Oceanography 46, 1819–1824.
Bergstad O. A. (1995). Age determination of deep-water fishes experiences, status and challenges for the future. In ‘Deep Water Fisheries of the North Atlantic Oceanic Slope’. (Ed. A. G. Hopper.) pp. 267–283. (Kluwer Academic Publishers: Dordrecht.)

Blaber S. J. M. (1997). ‘Fish and Fisheries of Tropical Estuaries.’ (Chapman & Hall: London.)

Booth, A. J. , Merron, G. S. , and Buxton, C. D. (1995). The growth of Oreochromis andersonii (Pisces: Cichlidae) from the Okavango Delta, Botswana, and a comparison of the scale and otolith methods of ageing. Environmental Biology of Fishes 43, 171–178.
Crossref | GoogleScholarGoogle Scholar | Carlander K. D. (1974). Difficulties in ageing fish in relation to inland fishery management. In ‘The Ageing of Fish’. (Ed. T. B. Bagenal.) pp. 200–205. (Unwin Brother’s Ltd: London.)

Cartes, J. E. (1998). Dynamics of the bathyal Benthic Boundary Layer in the northwestern Mediterranean: depth and temporal variations in macrofaunal-megafaunal communities and their possible connections within deep-sea trophic webs. Progress in Oceanography 41, 111–139.
Crossref | GoogleScholarGoogle Scholar | Choat J. H., and Robertson D. R. (2002). Age-based studies. In ‘Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem’. (Ed. P. F. Sale.) pp. 57–80. (Academic Press: Amsterdam.)

Choat, J. H. , Axe, L. M. , and Lou, D. C. (1996). Growth and longevity in fishes of the family Scaridae. Marine Ecology Progress Series 145, 33–41.
de Merona B., Hecht T., and Moreau J. (1988). Croissance des poissons d’eau douce africains. In ‘Biology and Ecology of African Freshwater Fishes’. (Eds C. Lévêque, M. N. Bruton and G. W. Ssentongo.) pp. 191–219. (Editions de l’ORSTOM: Paris.)

Doray, M. , Stequert, B. , and Taquet, M. (2004). Age and growth of blackfin tuna (Thunnus atlanticus) caught under moored fish aggregating devices, around Martinique Island. Aquatic Living Resources 17, 13–18.
Crossref | GoogleScholarGoogle Scholar | Durand M. H., Cury P., Mendelssohn R., Roy C., Bakun A., and Pauly D. (1998). ‘Global Versus Local Changes in Upwelling Systems.’ (ORSTOM Editions: Paris.)

Fagade S. O. (1974). Age determination in Tilapia melanotheron (Ruppell) in the Lagos lagoon, Lagos, Nigeria. In ‘The Ageing of Fish’. (Ed. T. B. Bagenal.) pp. 71–77. (Unwin Brother’s Ltd: London.)

Fenton, G. E. , Short, S. A. , and Ritz, D. A. (1991). Age determination of orange roughy, Hoplostethus atlanticus (Pisces: Trachichthyidae) using 210 Pb:226 Ra disequilibria. Marine Biology 109, 197–202.
Crossref | GoogleScholarGoogle Scholar | Fowler A. J. (1995). Annulus formation in otoliths of coral reef fish: a review. In ‘Recent Developments in Fish Otolith Research’. (Eds D. H. Secor, J. M. Dean and S. E. Campana.) pp. 45–63. (University of South Carolina Press: Columbia, SC.)

Garibaldi L., and Limongelli L. (2003). ‘Trends in Oceanic Captures and Clustering of Large Marine Ecosystems: Two Studies Based on the FAO Capture Database.’ Fisheries Technical Paper 435, FAO, Rome.

Gauldie, R. W. , West, I. F. , and Coote, G. E. (1995a). Evaluating otolith age estimates for Hoplostethus altlanticus by comparing patterns of checks, cycles in microincrement width, and cycles in strontium and calcium composition. Bulletin of Marine Science 56, 76–102.
Gordon J. D. M. (1979). Seasonal reproduction in deep-sea fish. In ‘Cyclic Phenomena in Marine Plants and Animals’. (Eds E. Naylor and R. G. Hartnoll.) pp. 223–229. (Pergamon Press: Oxford.)

Gordon J. D. M. (2001a). Deep sea fishes. In ‘Encyclopedia of Ocean Sciences’. (Eds J. H. Steele, S. A. Thorpe and K. K. Turekian.) pp. 687–693. (Academic Press: New York.)

Gordon J. D. M. (2001b). Open ocean fisheries for deep-water species. In ‘Encyclopedia of Ocean Sciences’. (Eds J. H. Steele, S. A. Thorpe and K. K. Turekian.) pp. 2023–2030. (Academic Press: New York.)

Goulding M. (1980). ‘The Fishes and the Forest: Exploration in Amazonia Natural History.’ (University of California Press: Los Angeles, CA.)

Haedrich, R. L. (1996). Deep-water fishes: evolution and adaptation in the earth’s largest living spaces. Journal of Fish Biology 49, 40–53.
Hofstede A. E. (1974). The application of age determination in fishing management. In ‘The Ageing of Fish’. (Ed. T. B. Bagenal.) pp. 206–219. (Unwin Brother’s Ltd: London.)

Horn, P. L. , Sutton, C. P. , and DeVries, A. L. (2003). Evidence to support the annual formation of growth zones in otoliths of Antarctic toothfish (Dissostichus mawsoni). Convention on the Conservation of Antarctic Marine Living Resources Science 10, 125–138.
Lemoalle J. (1999). La diversité des milieux aquatiques. In ‘Les Poissons des eaux Continentales Africaines – Diversité, Écologie, Utilisation par l’homme’. (Eds C. Lévêque and D. Paugy.) pp. 12–30. (Éditions de l’IRD: Paris.)

Lévêque C. (1999). Croissance et ontogénie. In ‘Les Poissons des eaux Continentales Africaines – Diversité, Écologie, Utilisation par l’homme’. (Eds C. Lévêque and D. Paugy.) pp. 154–166. (Éditions de l’IRD: Paris.) [In French]

Loubens, G. (1978). Biologie de quelques espèces de Poissons du lagon néo-calédonien. I. Détermination de l’âge (otolithométrie). Cahiers ORSTOM, série Océanographie 16, 263–283.[In French]
Lowe-McConnell R. H. (1987). ‘Ecological Studies in Tropical Fish Communities.’ (Cambridge University Press: Cambridge.)

Manickchand-Heileman, S. C. , and Kenny, J. S. (1990). Reproduction, age, and growth of the whitemouth croaker Micropogonias furnieri (Desmarest 1823) in Trinidad waters. Fishery Bulletin 88, 523–529.
Mathews C. P. (1974). An account of some methods of overcoming errors in ageing tropical and subtropical fish populations when the hard tissue growth markings are unreliable and the data sparse. In ‘The Ageing of Fish’. (Ed. T. B. Bagenal.) pp. 158–166. (Unwin Brother’s Ltd: London.)

Mauchline, J. (1988). Growth and breeding of mesopelagic and bathypelagic organisms of the Rockall trough, northeastern Atlantic Ocean and evidence of seasonality. Marine Biology 98, 387–393.
Crossref | GoogleScholarGoogle Scholar | McFarlane G. A., and Beamish R. J. (1995). Validation of the otolith cross-section method of age determination for sablefish (Anoploma fimbria) using oxytetracycline. In ‘Recent Developments in Fish Otolith Research’. (Eds D. H. Secor, J. M. Dean and S. E. Campana.) pp. 319–330. (University of South California Press: Columbia, SC.)

Menzies, R. J. (1965). Conditions for the existence of life on the abyssal sea floor. Oceanographic Marine Biology: an Annual Review 3, 195–210.
Merrett N. R., and Haedrich R. L. (1997). ‘Deep-Sea Demersal Fish and Fisheries. Fish and Fisheries Series 23.’ (Kluwer Academic: Dordrecht.)

Miquel, J. C. , Fowler, S. W. , La Rosa, J. , and Buat-Ménard, P. (1994). Dynamics of the downward flux of particles and carbon in the open northwestern Mediterranean Sea. Deep-Sea Research 41, 243–261.
Crossref | GoogleScholarGoogle Scholar | Morison A. K., and Kalish J. M. (1999). ‘Estimation of Age and Growth of Orange Roughy, Black Oreo and Smooth Oreo, and Natural Mortality of Black and Smooth Oreo.’ Marine and Freshwater Resources Institute, Final Report to the New Zealand Ministry of Fisheries (99/45), Queenscliff, Australia.

Moseley, H. N. (1880). Deep-sea dredging and life in the deep sea. Nature 21, 543–547.
Murray J., and Hjort J. (1912). ‘The Depths of the Ocean. A General Account of the Modern Science of Oceanography Based Largely on the Scientific Researches of the Norwegian Steamer Michael Sars in the North Atlantic.’ (Macmillan and Co.: London.)

Newman, S. J. , Williams, D. M. , and Russ, G. R. (1996). Age validation, growth and mortality rates of the tropical snappers (Pisces: Lutjanidae), Lutjanus adetii (Castelnau, 1873) and L. quinquelineatus (Bloch, 1790) from the central Great Barrier Reef. Marine and Freshwater Research 47, 575–584.
Panfili J., and Morales-Nin B. (2002). Semi-direct validation. In ‘Manual of Fish Sclerochronology’. (Eds J. Panfili, H. de Pontual, H. Troadec and P. J. Wright.) pp. 129–134. (Ifremer-Ird coedition: Brest.)

Panfili J., de Pontual H., Troadec H., and Wright P. J. (2002). ‘Manual of Fish Sclerochronology.’ (Ifremer-Ird Editions: Brest.)

Panfili, J. , Mbow, A. , Durand, J. D. , Diop, K. , Diouf, K. , Thior, D. , Ndiaye, P. , and Laë, R. (2004). Influence of salinity on the life-history traits of the West African black-chinned tilapia (Sarotherodon melanotheron): Comparison between the Gambia and Saloum estuaries. Aquatic Living Resources 17, 65–74.
Crossref | GoogleScholarGoogle Scholar | Pannella G. (1974). Otoliths growth patterns: an aid in age determination in temperate and tropical fishes. In ‘The Ageing of Fish’. (Ed. T. B. Bagenal.) pp. 28–39. (Unwin Brother’s Ltd: London.)

Pannella G. (1980). Growth pattern in fish sagittae. In ‘Skeletal Growth of Aquatic Organisms. Biological Records of Environmental Change’. (Eds D. C. Rhoads and R. A. Lutz.) pp. 519–560. (Plenum Press: New York.)

Paul, L. J. (1992). Age and growth-studies of New-Zealand marine fishes, 1921–90 – A review and bibliography. Australian Journal of Marine and Freshwater Research 43, 879–912.
Pauly D., Moreau J., and Prein M. (1988). A comparison of overall growth performance of tilapia in open waters an aquaculture. In ‘The Second International Symposium on Tilapia in Aquaculture, ICLARM Conference Proceedings Vol. 15’. (Eds R. S. V. Pullin, T. Bhukasawan, K. Tonguthai and J. L. Maclean.) pp. 469–479. (Department of Fisheries, Bangkok, Thailand, and International Center for Living Aquatic Resources Management, Manila, Philippines.)

Pearson, D. E. (1996). Timing of hyaline-zone formation as related to sex, location, and year of capture in otoliths of the widow rockfish, Sebastes entomelas. Fishery Bulletin 94, 190–197.
Pullin R. S. V., Bhukaswan T., Tonguthai K., and MacLean J. L. (1988). ‘The Second International Symposium on Tilapia in Aquaculture. ICLARM Conference Proceedings Vol. 15.’ (Department of Fisheries, Bangkok, Thailand, and International Center for Living Aquatic Resources Management Manila, Philippines.)

Pullin R. S. V., Lazard J., Legendre M., Amon Kothias J. B., and Pauly D. (1996). ‘The Third International Symposium on Tilapia in Aquaculture. ICLARM Conference Proceedings, Vol. 41.’ (International Center for Living Aquatic Resources Management, Manila, Philippines.)

Roy C. (1991). Les upwellings: le cadre physique des pêcheries côtières ouest-africaines. In ‘Pêcheries Ouest Africaines: Variabilité, Instabilité et Changement’. (Eds P. Cury and C. Roy.) pp. 38–66. (ORSTOM Editions: Paris.)

Sardà, F. , Cartes, J. E. , and Company, J. B. (1994). Spatiotemporal variations in megabenthos abundance in three different habitats of the Catalan deep-sea (Western Mediterranean). Marine Biology 120, 211–219.
Crossref | GoogleScholarGoogle Scholar | Shepard F. P., and Dill R. F. (1966). ‘Submarine Canyons and Other Sea Valleys.’ (Rand McNally: Chicago, IL.)

Smith, K. L. , and Baldwin, R. J. (1984). Seasonal fluctuations in deep-sea sediment community oxygen-consumption – central and eastern North Pacific. Nature 307, 624–626.
Crossref | GoogleScholarGoogle Scholar | Thistle D. (2003). The deep-sea floor: an overview. In ‘Ecosystems of the Deep Oceans’. (Ed. P. A. Tyler.) pp. 5–38. (Elsevier: Southampton.)

Tracey, D. M. , and Horn, P. L. (1999). Background and review of ageing orange roughy (Hoplostethus atlanticus, Trachichthyidae) from New Zealand and elsewhere. New Zealand Journal of Marine and Freshwater Research 33, 67–86.
Yosef T. G., and Casselman J. M. (1995). A procedure for increasing the precision of otolith age determination of tropical fish by differentiating biannual recruitment. In ‘Recent Developments in Fish Otolith Research’. (Eds D. H. Secor, J. M. Dean and S. E. Campana.) pp. 247–269. (University of South Carolina Press: Columbia, SC.)